China Professional G2z-5/30~400 High Pressure 400bar Helium Hydrogen Gas Air Screw Diaphragm Compressor with Hot selling

Product Description

100% purity no leakage Oil-free  Booster Hydrogen Gas Diaphragm Compressor  

The diaphragm compressor booster is a special structure of the volume-type compressor with high compression ratio, good leak tightness, compressed gas without lubricating oil and other CHINAMFG impurities contaminated features, So it’s suitable for high purity compression, rare, valuable, inflammable, explosive, toxic, harmful, corrosive, and high pressure gas.

Keepwin produced Helium compressor, Oxygen Compressor, Hydrogen Compressor, Nitrogen Compressor, Recovery H2 Gas compressor, Argon compressor, cylinder filling booster compressor, etc widely used in  Petrochemicals, Fine ChemicalsPharmaceutical ChemicalsEnergy ChemicalsMachinery IndustryElectronics IndustryAgricultureAnimal Husbandry and  Defense Industry, AstronomyAerospace,  Medical and other fields.
.
Advantages of Diaphragm compressor:
1.  Oil-free compression due to the hermetic separation between gas and oil chamber.
2.  Abrasion-free compression due to static seals in the gas stream
3.   Automatic shutdown in case of a diaphragm failure prevents damage
4.  High Compression Ratios- Discharge pressure up to 1000bar.
5.   Contamination Free Compression
6.  Corrosion Resistance
7.  High Reliability

As a displacement compressor with special,diaphragm compressor is characterized by large compression ratio, good sealing performace,and that the compress air will not be polluted by lubricant or other CHINAMFG impurities.Therefore diaphragm compressor is applicable to compress high-purity, rare and precious,flammable and explosive,toxic and hazardous,corrosive and high pressure gases.
Keepwin diaghragm compressors consist of 4 types that are Z,V,L and D type.The exhaust pressure ranges from 1.3 to 100 Mpa. The products are widely used in the industries of national defense,scientific research,petrochemical,nuclear power,parmaceutical,food-stuff and gas separation.

We offer a wide variety and types of diaphragm compressors. You can install these in many different scenarios. It is possible to install the compressors in hydrogen houses between and  electrolyzer and a storage system, in businesses to support their needs such as ice cream companies for hydrogenation, at farmers where they use it to produce ammonia or as a fuel at the back of a wind farm or solar farm, and refineries to pressurise the hydrogen before it is being used to clean up the gas or oil. There are also many applications for our H2 gas compressors.

For instance, you can also use the diaphragm compressor in green hydrogen transport applications, energy storage solutions, grid balancing, food processing, and power station cooling. We pride ourselves at ensuring that as many applications of our compressor units use renewable electricity to pressure the hydrogen.

Each of our H2 compressor units is unique. It is built to your needs all with the latest innovations in hydrogen compression, safety, and operation. We offer different hydrogen flow and pressures all set to match your storage working pressure.

We can customize hydrogen into different types of storage systems at 150bar 200 bar, 350 bar (5000 psi), 450 bar, 500 bar, 700 bar (10,000 psi), 900 bar (13,000 psi).

Inquiry to us!
Note:for the other customizing process gas compressor, please kindly send below information to our factory to calculate the producing cost for your item.
 Clients’ inquiries should contain related parameters 
A. The gas compression medium 
B. Gas composition? or the gas purity?
C. The flow rate: _____Nm3/hr
D. Inlet pressure: _____ Bar (gauge pressure or absolute pressure)
E. Discharge pressure: _____ Bar (gauge pressure or absolute pressure)
F. Inlet temperature
G.Discharge temperature
H. Cooling water temperature as well as other technical requirement.

Technical Paramter of Oil Free Diaphragm Compressor

No. Model F.A.D (Nm3/h) Inlet Pressure 
( Mpa)
Exhuast Pressure 
(Mpa)
Power 
(KW)
Speed
r/min
Dimension
(L×W×H)mm
N.W 
Weight (t)  
Voltage
V
 
15 GZ-45/150~350 45 10~20 35 7.5 400 1610*790*1380 0.55 380  
16 GZ-5/30~400 5 3 40 5.5 400 1560*790*1470 0.55 380  
17 GZ-30/32~170 30 3.2 17 7.5 400 1550*650*1530 0.7 380  
18 GZ-600/75~83 600 7.5 8.3 11 400 1780*1050*1750 1.3 380  
19 GZ-85/100~350 85 5~25 35 18.5 400 1900*1240*1760 1.6 380  
20 GZ-150/150~350 150 15 35 18.5 400 1780*1050*1750 1.8 380  
21 GZ-40/7~30 40 0.7 3 7.5 400 1653*1372*1470 0.9 380  
22 GZ-100/20~35 100 2 3.5 5.5 400 1330*750*1530 0.9 380  
23 GV-110/8~150 110 0.8 15 30 400 2370*1458*1630 3 380  
24 GV-150/3.5~30 150 0.35~0.55 3 30 400 2543*1835*2036 3.21 380  
25 GV-60/0.38~9.3 60 0.038 0.93 15 400 2030*1520*1750 72 380  

Main technical data

Cylinder 
All the cylinders comprise upper plate, diaphragms, and cylinder body etc. The diaphragms are clamped between the cylinder cover and cylinder body. The cylinder cover and cylinder body each has a  concave recess hollowed out in their contacting faces. The gas cylinder is formed between cylinder cover concave recess and diaphragms. Both suction valve and discharge valve are fitted on the upper plate. Among of them, the discharge valve is located on the center of the upper plate. The evenly located small oil holes are on the cylinder body to deliver the oil pressure inside the oil cylinder to the bottom of diaphragms (each diaphragm compressor’s cylinder has 3 piece diaphragm.) 

Pressure Regulating Valve 
The oil pressure of oil cylinder is regulated by the tension of the valve spring.In case the oil pressure is higher than the regulated value, turn the regulating bolt counter-clockwise to loosen the spring tension, but turn the regulating bolt clockwise to tighten the spring, when the oil pressure is lower than the regulated value. When the oil pressure meets the required value, the regulating bolt must be locked with a lock-nut. The oil pressure of the oil cylinder shall always be higher than the discharge pressure by 15~20%. But the oil and gas differential pressure shall not be lower than 0.3MPa or higher than 1.5MPa. 

Cooler
The cooler structure is the double-wall pipe type. The circular space between the outer and inner pipe is the cooling water passage and the inner pipe is the gas passage. Normally the water inlet port is at the lower side and the water outlet port is at the upper side. The flow direction of cooling water and gas is on the contrary.

Oil Pressure Measuring Device 
The measuring device of oil cylinder discharge pressure consists of shock-proof pressure gauge, check valve and unloading valve. The case of the pressure gauge is totally airproof and filled with damping liquid. The inner devices of gauge is immersed in the liquid, which makes the pressure gauge hands stable through the function of the viscosity of damping liquid. The unloading valve is fitted under the gauge to discharge the remained air in the oil pipeline   and to unload the oil pressure gauge. Also the check valve connecting with oil cylinder through pipeline is fitted under the unloading valve.   

Oil pipes 
Oil pipes consist of lube oil pipe and oil pressure secure system.

The lubrication for the driving device adopts gear oil pump circulation pressure lubricating. The lube oil stored in the frame oil tank enters into the gear oil pump after being filtered and is pressed into the oil holes in the crankshaft through the gear oil pump to lubricate the crankshaft friction surface. At the same time, part of the lube oil reaches the crosshead pin and crosshead along the oil holes in the connecting rod to lubricate the friction surface. The oil pressure of gear oil pump shall be kept between 0.3~0.5Mpa, and the bearings at the 2 ends of crankshaft is splash lubricated. 
Oil pressure secure system consists of oil compensating pipe, pressure-measuring pipe and oil return pipe. The oil output from the oil compensating pump will supplement oil for compressor cylinders through the oil compensating pipe and the excess oil returns to the crankcase through the pressure-regulating valve.

FAQ
Q1: What’s your delivery time?
A: Generally 5-10 days if the goods are in stock. Or it is 20-35 days if the goods are not in stock, it is according to quantity.

Q2: How long is your air compressor warranty?
A: Usually 1 year /12 Months for whole compressor machine, 2years/24months for air end (except maintenance spare parts.). And we can provide further warranty if necessary. 

Q3: How long could your air compressor be used?
A: Generally, more than 10 years.

Q4: Can you do OEM for us?
A: Yes, of course. We have around 2 decades OEM experience.And also we can do ODM for you.

Q5: What’s payment term?
A: T/T, L/C, D/P, Western Union, Paypal, Credit Card, Trade Assurance and etc. Also we could accept USD, RMB, GBP, Euro and other currency.

Q6: How about your customer service?
A: 24 hours on-line service available. 48hours problem sovled promise.

Q7: How about your after-sales service?
A: 1. Provide customers with intallation and commissioning online instructions.
2. Well-trained engineers available to overseas after-sales service. 

Q8. Are you factory?
A4: Absolutely! You have touched the primary sources of Air /Gas Compressor. We are factory.

How to contact with us?
Send your Inquiry Details in the Below, or Click “Send inquiry to supplier” to check more other Gas Compressor machine equipment!

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Oil-free
Cooling System: Water Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Vertical
Structure Type: Closed Type
Compress Level: Single-Stage
Customization:
Available

|

air compressor

What Is the Role of Oil in Lubricated Screw Compressors?

In lubricated screw compressors, oil plays a crucial role in ensuring optimal performance, reliability, and longevity of the compressor. Here’s a detailed explanation of the role of oil in lubricated screw compressors:

Lubrication: One of the primary functions of oil in screw compressors is to provide lubrication to the moving parts, particularly the screw rotors. The oil forms a thin film between the rotors and the compressor housing, reducing friction and wear. This lubrication minimizes mechanical losses and helps maintain efficient operation by reducing energy consumption.

Sealing: Oil also acts as a sealing medium in lubricated screw compressors. The oil film created between the rotors and the compressor housing helps create a seal, preventing air or gas leakage between the high-pressure and low-pressure sides of the compressor. This sealing action is crucial for maintaining the compressors’ efficiency and preventing losses in compression performance.

Cooling: Oil plays a vital role in cooling various components of the screw compressor. As the compressed air or gas is compressed, it generates heat. The oil absorbs a significant amount of this heat and carries it away from the compression chamber. The oil then circulates through the compressor’s oil cooling system, where it dissipates the heat to the surrounding environment or through an oil cooler. Efficient oil cooling helps prevent overheating of the compressor components, ensuring reliable operation and extending the compressor’s lifespan.

Cleaning: The oil in lubricated screw compressors acts as a cleaning agent. It carries away contaminants, such as dirt, dust, and metal particles, that may enter the compressor during operation. The oil passes through filters and separators, removing these impurities and preventing them from accumulating in the compressor’s internal components. Clean oil helps maintain the integrity of the compressor’s internal parts and reduces the risk of damage or malfunctions.

Sealing Element Lubrication: In some lubricated screw compressors, the oil also serves to lubricate the sealing elements, such as the shaft seals or labyrinth seals. Proper lubrication of these seals helps maintain their effectiveness in preventing oil leakage and maintaining the separation between the oil and the compressed air or gas.

Corrosion Protection: Oil in screw compressors often contains additives that provide corrosion protection to the internal components. These additives form a protective layer on the metal surfaces, preventing corrosion caused by moisture or contaminants present in the compressed air or gas. Corrosion prevention helps maintain the compressor’s performance, efficiency, and reliability over time.

It’s important to note that lubricated screw compressors require regular oil monitoring, oil analysis, and oil changes to ensure optimal performance. The oil level, quality, and viscosity should be regularly checked and maintained within the manufacturer’s recommended specifications.

In summary, oil in lubricated screw compressors serves crucial functions such as lubrication, sealing, cooling, cleaning, sealing element lubrication, and corrosion protection. These functions collectively contribute to the efficient and reliable operation of the compressor, extending its service life and minimizing maintenance requirements.

air compressor

Can Screw Compressors Be Used for Medical Air Supply?

Yes, screw compressors can be used for medical air supply. Here’s a detailed explanation:

Screw compressors are commonly employed in various applications, including medical air supply systems. Medical air is a critical utility in healthcare facilities, used for various purposes such as respiratory therapy, anesthesia, and surgical tools. Here are some key points to consider:

1. Reliability and Efficiency:

Screw compressors are known for their reliability and efficiency. They can provide a continuous and reliable source of compressed air, ensuring a stable supply for medical applications. The rotary screw design allows for smooth and efficient compression, minimizing energy consumption and maximizing system performance.

2. Oil-Free Operation:

In medical applications, it is crucial to ensure the purity of the compressed air. Screw compressors can be designed and certified to provide oil-free air, eliminating the risk of oil contamination in the medical air supply. Oil-free screw compressors incorporate specialized sealing systems and filtration to prevent oil carryover, making them suitable for medical air applications.

3. Air Quality Standards:

Medical air must meet specific air quality standards to ensure patient safety and treatment effectiveness. Standards such as the European Pharmacopoeia (Ph. Eur.) or the United States Pharmacopeia (USP) define the required purity levels for medical air, including limits on particulate matter, moisture content, and microbial contamination. Screw compressors can be equipped with appropriate filtration and purification systems to meet these standards.

4. Integrated Drying and Filtration:

Some screw compressors designed for medical air applications incorporate integrated drying and filtration systems. These systems remove moisture and contaminants from the compressed air, ensuring it meets the required quality standards. Integrated drying systems can include refrigerated dryers, desiccant dryers, or membrane dryers, depending on the specific needs of the medical air supply system.

5. Redundancy and Backup Systems:

Medical air supply systems often require a high level of reliability and continuity. Screw compressors can be configured with redundancy and backup systems to ensure uninterrupted supply. Multiple compressors can be installed in parallel, with automatic switching mechanisms to maintain supply in case of a compressor failure or maintenance activities.

6. Monitoring and Alarms:

Modern screw compressors used in medical air supply systems often feature advanced monitoring capabilities. They can continuously monitor and record key parameters such as pressure, temperature, and system performance. Alarms and alerts can be configured to notify operators or maintenance personnel in case of abnormal conditions or potential issues with the compressor.

7. Compliance with Standards and Regulations:

When using screw compressors for medical air supply, it is essential to comply with relevant standards and regulations. These may include medical device regulations, electrical safety standards, and guidelines specific to medical gas systems. Compliance ensures that the medical air supply system meets the necessary safety and quality requirements.

In summary, screw compressors can be used for medical air supply, providing reliable and efficient compressed air for various medical applications. With their reliability, oil-free operation, adherence to air quality standards, integrated drying and filtration capabilities, and the ability to incorporate redundancy and monitoring features, screw compressors are well-suited for medical air supply systems in healthcare facilities.

air compressor

What Are the Key Components of a Screw Compressor?

A screw compressor consists of several key components that work together to compress air or gas. Here’s a detailed explanation of these components:

1. Male and Female Rotors:

The male and female rotors are the primary components of a screw compressor. These helical rotors have specially designed profiles that interlock with each other. The male rotor typically has fewer lobes or threads compared to the female rotor. As the rotors rotate, the interlocking lobes create compression chambers that gradually reduce in volume, compressing the air or gas.

2. Compression Chamber:

The compression chamber is formed by the interlocking lobes of the rotors. It is the space where the air or gas is compressed as the rotors rotate. The volume of the compression chamber decreases as the lobes move towards the discharge end, resulting in the compression of the trapped air or gas.

3. Inlet and Outlet Ports:

The inlet port is the entry point through which the air or gas enters the screw compressor. It is typically located at the suction side of the compressor. The inlet port allows the air or gas to flow into the compression chamber during the suction process. The outlet port is the exit point through which the compressed air or gas is discharged from the compressor.

4. Drive System:

The drive system of a screw compressor consists of a motor and a drive mechanism. The motor provides the rotational power required to drive the rotors. Common types of drive mechanisms include direct drive, belt drive, and gear drive. The drive system ensures that the rotors rotate in opposite directions at the desired speed and synchronization.

5. Oil System (in oil-injected compressors):

In oil-injected screw compressors, an oil system is present to provide lubrication, cooling, and sealing between the rotors. The oil system typically includes an oil reservoir, an oil pump, oil filters, and oil coolers. The lubricating oil is injected into the compression chamber, where it forms a thin film on the rotors, reducing friction and minimizing wear.

6. Cooling System:

Screw compressors often incorporate a cooling system to maintain optimal operating temperatures. The cooling system may include air or water-cooled heat exchangers, which dissipate the heat generated during compression. Cooling ensures that the compressor operates within safe temperature limits, preventing overheating and prolonging the lifespan of the components.

7. Control System:

A control system is an essential component of a screw compressor, providing monitoring and regulation of various parameters. It may include sensors, controllers, and safety devices to measure and control variables such as pressure, temperature, and operating conditions. The control system ensures efficient and safe operation of the screw compressor.

8. Sound Attenuation and Vibration Isolation:

To reduce noise and vibration, screw compressors are often equipped with sound attenuation measures and vibration isolation systems. These components help in minimizing the noise and vibrations generated during operation, making the compressor suitable for noise-sensitive environments.

In summary, the key components of a screw compressor include the male and female rotors, compression chamber, inlet and outlet ports, drive system, oil system (in oil-injected compressors), cooling system, control system, and sound attenuation/vibration isolation components. These components work together to enable the efficient compression of air or gas in the screw compressor.

China Professional G2z-5/30~400 High Pressure 400bar Helium Hydrogen Gas Air Screw Diaphragm Compressor   with Hot sellingChina Professional G2z-5/30~400 High Pressure 400bar Helium Hydrogen Gas Air Screw Diaphragm Compressor   with Hot selling
editor by CX 2024-01-22

Leave a Reply

Your email address will not be published. Required fields are marked *