China supplier R404A Rotor Refrigerator Compressor with Liquid Spray System Screw Air Compressor Fewer Faults with Good quality

Product Description

As professional AC manufactory, we have large stock about different famous in warehouse with perfect good price.Also we export wholesale compressor business overseas for many years. We can offer competitive price and good service. Hope we can your good supplier in China in future.

Refrigerant Typical Model Output       (HP) Power Source Nominal Capacity Input Current    (A) COP      (w/w) Displacement   (cm)
(KW) (BTU/U)
R407C JT90GBBV1L 3 1Φ 220V/50Hz 8.49 28980 2.73 12.7 3.11 45.8
JT90GBBY1L 3 3Φ 380V/50hz 8.49 28980 2.65 4.6 3.2 45.8
JT95GBBV1L 3 1Φ 220V/50Hz 9.16 31270 2.95 13.6 3.11 49.4
JT95GBBY1L 3 3Φ 380V/50hz 9.16 31270 2.86 4.9 3.2 49.4
JT125GBBY1L 4 3Φ 380V/50hz 11.8 45710 3.69 6.3 3.2 63.2
JT160GBBY1L 5 3Φ 380V/50hz 14.7 50180 4.6 7.95 3.2 79.2
JT170GBBY1L 5.5 3Φ 380V/50hz 15.7 53600 4.91 8.5 3.2 84
JT300DA-Y1L 10 3Φ 380V/50hz 29.9 157150 9.45 16.2 3.16 163
JT335DA-Y1L 12 3Φ 380V/50hz 34 116050 10.7 18.1 3.18 184.2
R410A JT90G-P8V1N 3 1Φ 220-230V/50Hz 8.54 29150 2.95 13.2 2.89 33.1
JT125G-P8V1 4 1Φ 220-240V/50Hz 11.8 45710 4.08 19.9 2.89 46
JT90G-P8Y1 3 3Φ 380-415V/50hz 8.54 29150 2.83 4.7 3.01 33.1
JT125G-P8Y1 4 3Φ 380-415V/50hz 11.8 45710 3.93 6.5 3 46
JT160G-P8Y1 5 3Φ 380-415V/50hz 14.9 50860 4.88 8.3 3.06 56.8
JT170G-P8Y1 5.5 3Φ 380-415V/50hz 15.91 54300 5.2 8.9 3.06 60.5
R22 JT125BCBY1L 4 3Φ 380v/50hz 11.9 40620 3.8 7 3.13 67
JT160BCBY1L 5 3Φ 380v/50hz 15 51200 4.66 8.6 3.22 83.1
JT90GABV1L 3 1Φ 220V/50Hz 8.41 28710 2.56 11.9 3.3 45.8
JT90GABY1L 3 3Φ 380v/50hz 8.41 28710 2.47 4.36 3.4 45.8
JT95GABV1L 3 1Φ 220V/50Hz 9.07 30960 2.75 12.8 3.3 49.4
JT95GABY1L 3 3Φ 380v/50hz 9.07 30960 2.67 4.62 3.4 49.4
JT125GABY1L 4 3Φ 380v/50hz 11.7 39940 3.44 6 3.4 63.2
JT160GABY1L 5 3Φ 380v/50hz 14.6 49830 4.3 7.5 3.4 79.2
JT170GABY1L 5.5 3Φ 380v/50hz 15.6 53250 4.59 8.1 3.4 84
JT212D-Y1L 7 3Φ 380v/50hz 21.5 73390 6.49 11.2 3.31 117.3
JT236D-Y1L 7.5 3Φ 380v/50hz 24 81920 7.2 12.3 3.33 131
JT265D-Y1L 8 3Φ 380v/50hz 26.7 91140 7.95 13.6 3.36 144.7
JT300D-Y1L 10 3Φ 380v/50hz 29.9 157150 8.85 15 3.38 163
JT315D-Y1L 11 3Φ 380v/50hz 31.1 106160 9.15 15.5 3.4 169.5
JT335D-Y1L 12 3Φ 380v/50hz 34 116050 9.98 17 3.41 184.2
Multi-paralleled Scroll Compressor                
JT212D-TY1L 7 3Φ 380v/50hz 21.5 73380 6.49 11.2 3.31 117.3
JT236D-TY1L 7.5 3Φ 380v/50hz 24 81920 7.2 12.3 3.33 131
JT265D-TY1L 8 3Φ 380v/50hz 26.7 91130 7.95 13.6 3.36 144.7
JT300D-TY1L 10 3Φ 380v/50hz 29.9 157150 8.85 15 3.38 163
JT335D-TY1L 12 3Φ 380v/50hz 34 116050 9.98 17 3.41 184.2

MAIN PRIDUCTS

 

OUR COMPANY

 

CERTIFICATE

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Year
Warranty: 12month
Lubrication Style: Lubricated
Cooling System: Air Cooling
Refrigerant Type: Freon
Structure: Closed Type
Customization:
Available

|

air compressor

What Safety Precautions Should Be Taken When Operating Screw Compressors?

When operating screw compressors, it is important to follow specific safety precautions to ensure the well-being of personnel and prevent potential accidents. Here’s a detailed explanation:

1. Familiarize Yourself with the Equipment:

  • Before operating a screw compressor, thoroughly read and understand the manufacturer’s instructions, safety guidelines, and operating procedures. Familiarize yourself with the specific features, controls, and safety devices of the compressor.

2. Wear Appropriate Personal Protective Equipment (PPE):

  • Wear the necessary PPE, such as safety glasses, hearing protection, gloves, and appropriate clothing, when operating the compressor. PPE helps protect against potential hazards, including flying debris, noise, and contact with hot or moving parts.

3. Ensure Proper Ventilation:

  • Operate the screw compressor in a well-ventilated area to prevent the buildup of potentially harmful gases or fumes. Ensure that the compressor’s intake and exhaust vents are not obstructed, allowing for adequate airflow.

4. Compressor Location:

  • Position the compressor on a stable and level surface to prevent tipping or instability during operation. Ensure that the compressor is located away from flammable materials, heat sources, or sources of ignition.

5. Electrical Safety:

  • Follow electrical safety guidelines and ensure that the compressor is properly grounded. Avoid using damaged or frayed electrical cords and ensure that the electrical connections are secure.

6. Lockout/Tagout Procedures:

  • Before performing any maintenance or repair tasks on the compressor, follow lockout/tagout procedures to isolate electrical power and prevent accidental startup. Lockout/tagout procedures help protect against unexpected energization of the compressor or its components.

7. Pressure Relief:

  • Before performing any maintenance tasks or opening the compressor, ensure that all pressure has been relieved from the system. Follow proper procedures for depressurizing the compressor and associated piping to avoid sudden releases of pressure.

8. Hot Surfaces:

  • Be cautious of hot surfaces, such as compressor casings, piping, or discharge components. Allow sufficient cooling time before touching or performing maintenance tasks on hot surfaces to avoid burns.

9. Maintenance and Inspection:

  • Adhere to the manufacturer’s recommended maintenance schedule and perform regular inspections of the compressor. Replace any worn or damaged components promptly to prevent potential hazards or malfunctions.

10. Emergency Procedures:

  • Be familiar with emergency procedures, including how to shut down the compressor in case of an emergency, how to respond to leaks or spills, and how to handle fire or electrical incidents. Have emergency contact information readily available.

11. Training and Qualified Personnel:

  • Ensure that operators and maintenance personnel are adequately trained in the safe operation and maintenance of screw compressors. Only allow qualified personnel to perform maintenance or repair tasks.

It is essential to consult the specific safety guidelines provided by the manufacturer of the screw compressor as they may include additional precautions or recommendations.

In summary, when operating screw compressors, it is important to familiarize yourself with the equipment, wear appropriate PPE, ensure proper ventilation, follow electrical safety measures, implement lockout/tagout procedures, be cautious of hot surfaces, perform regular maintenance and inspections, and be prepared with emergency procedures. By following these safety precautions, the risk of accidents or injuries can be minimized, ensuring a safe working environment when operating screw compressors.

air compressor

What Is the Role of Air Dryers in Screw Compressor Systems?

Air dryers play a crucial role in screw compressor systems by removing moisture from the compressed air. Here’s a detailed explanation:

Air contains moisture in the form of water vapor, which can be problematic when compressed. As air is compressed, its temperature rises, causing the moisture to condense into liquid water. This moisture can cause various issues within the compressed air system, including equipment corrosion, decreased efficiency, and compromised air quality.

The role of air dryers in screw compressor systems is to remove this moisture from the compressed air, ensuring dry and clean air for reliable and efficient operation. Here are the key functions and benefits of air dryers:

1. Moisture Removal:

Air dryers extract moisture from the compressed air, reducing its dew point temperature. By lowering the dew point, the risk of condensation and subsequent issues, such as corrosion and water damage to pneumatic equipment, is minimized. Dry air is essential for maintaining the integrity and longevity of the system components.

2. Protection of Pneumatic Equipment:

Moisture in the compressed air can negatively impact pneumatic equipment, including valves, actuators, and air tools. It can cause rust, corrosion, and malfunctioning of these components. By using air dryers to remove moisture, the risk of damage to the equipment is significantly reduced, extending their lifespan and ensuring reliable performance.

3. Prevention of Contamination:

Moisture in compressed air can also lead to the growth of microorganisms, such as bacteria and fungi, within the system. These contaminants can contaminate the air and pose a health risk or cause product spoilage in sensitive applications, such as food and pharmaceutical industries. Air dryers help prevent the growth of these contaminants, ensuring clean and safe compressed air.

4. Enhanced Efficiency:

Dry compressed air improves the efficiency of the overall system. Moisture in the air can cause pressure drop issues, affecting the performance of pneumatic tools and equipment. Dry air allows for optimal operation, reducing energy consumption and enhancing system efficiency.

5. Reduced Maintenance and Downtime:

Moisture-related issues can lead to increased maintenance requirements and system downtime. By removing moisture with air dryers, the need for frequent maintenance and repairs caused by water-related problems is minimized. This helps in reducing costly downtime and improving productivity.

There are different types of air dryers commonly used in screw compressor systems:

a) Refrigerated Air Dryers: These dryers cool the compressed air, causing moisture to condense and separate from the air stream. The condensed water is then drained from the system, leaving behind dry air.

b) Desiccant Air Dryers: These dryers utilize desiccant materials, such as silica gel or activated alumina, to adsorb moisture from the compressed air. The desiccant material undergoes a regeneration process to remove the accumulated moisture, ensuring continuous drying of the compressed air.

c) Membrane Air Dryers: These dryers use permeable membranes to selectively remove moisture from the compressed air. The membranes allow water vapor to pass through while retaining dry air, effectively drying the compressed air stream.

The selection of the appropriate air dryer depends on factors such as the desired level of moisture removal, the specific application requirements, and the operating conditions of the screw compressor system.

In summary, air dryers play a vital role in screw compressor systems by removing moisture from the compressed air. They protect equipment, prevent contamination, enhance efficiency, and reduce maintenance and downtime. By ensuring dry and clean compressed air, air dryers contribute to the longevity, reliability, and optimal performance of the entire compressed air system.

air compressor

Can Screw Compressors Handle High-Pressure Applications?

Yes, screw compressors are capable of handling high-pressure applications. Here’s a detailed explanation:

Screw compressors are known for their ability to deliver high-pressure compressed air or gas. The design of screw compressors allows them to achieve higher pressure ratios compared to other types of compressors, such as reciprocating piston compressors.

The compression process in screw compressors is continuous and smooth, which enables them to handle high-pressure requirements efficiently. The intermeshing rotors create compression chambers that gradually reduce in volume, resulting in the compression of air or gas. By adjusting the rotational speed of the rotors and optimizing the design parameters, screw compressors can generate the desired high discharge pressures.

However, it’s important to note that the maximum pressure capability of a screw compressor may vary depending on factors such as:

  • 1. Compressor Design: The design features of the screw compressor, including the rotor profile, sealing mechanism, and cooling system, can influence its maximum pressure capacity.
  • 2. Rotor Size and Speed: The size and rotational speed of the rotors impact the compression ratio and, consequently, the achievable discharge pressure. Larger rotors and higher rotational speeds generally allow for higher pressure ratios.
  • 3. Drive Power: The power of the drive motor connected to the screw compressor affects its ability to handle high-pressure applications. Adequate power is necessary to overcome the resistance and maintain the desired compression ratio.
  • 4. Structural Integrity: The structural integrity and material strength of the compressor housing, rotors, and other components determine the maximum pressure that the compressor can withstand without failure or leakage.

It’s important to select a screw compressor with the appropriate specifications and consult the manufacturer’s guidelines to ensure that it can handle the specific high-pressure requirements of the application.

Additionally, it’s worth noting that high-pressure applications may also require additional equipment, such as pressure vessels or downstream pressure regulators, to safely handle and control the compressed air or gas at the desired pressure levels.

China supplier R404A Rotor Refrigerator Compressor with Liquid Spray System Screw Air Compressor Fewer Faults   with Good qualityChina supplier R404A Rotor Refrigerator Compressor with Liquid Spray System Screw Air Compressor Fewer Faults   with Good quality
editor by CX 2024-05-16

Leave a Reply

Your email address will not be published. Required fields are marked *