Tag Archives: oil compressor

China wholesaler 20m3 Air Cooling Oil Free Medicacl High Pressure Oxygen Compressor Manufacturers air compressor price

Product Description

 

20m3 Air Cooling Oil Free Medicacl High Pressure Oxygen Compressor Manufacturers

 

Introduction

Cape-Golden Oil Free Oxygen Compressor is no liquid lubricant in the body and no liquid lubricant in the crankcase supporting the crankshaft. Piston ring and guide ring is made of high quality modified PTFE with self-lubricating performance. The main parts of stainless steel and copper, aluminum and other material is not easy to produce sparks, all bearings with seals prevent loss of grease, the high pressure Oil Free Oxygen Compressor lubrication system, the movement of the friction pair of grease are the antioxidant of Oil Free Oxygen Compressor special grease.

 

 

Product Specification

Model

Capacity/

Flow Rate

Inlet Pressure Discharge Pressure Power Weight Dimension(L*W*H)
WWZ-3/4-150 3m³/h 3-4bar 150bar 4kw 140kg 1080X820X850mm
WWZ-5/4-150 5m³/h 3-4bar 150bar 5.5kw 210kg 1080X820X850mm
WWZ-10/4-150 10m³/h 3-4bar 150bar 7.5kw 350kg 1080X900X850mm
WWZ-15/4-150 15m³/h 3-4bar 150bar 11kw 350kg 1250X1571X850mm
WWZ-20/4-150 20m³/h 3-4bar 150bar 15kw 470kg 1250X1571X850mm
WWZ-30/4-150 30m³/h 3-4bar 150bar 15kw 500kg 1350X1571X900mm
WWZ-40/4-150 40m³/h 3-4bar 150bar 15kw 500kg 1600X1100X1100mm
WWZ-50/4-150 50m³/h 3-4bar 150bar 15kw 500kg 1600X1100X1100mm

 

Oxygen Compressor Control Mode

Oil Free Oxygen Compressor adopts inlet, exhaust pressure switch + inlet and exhaust solenoid valve automatic control.

The Oil Free Oxygen Compressor‘s electrical control loop is connected with the inlet and exhaust pressure switch, in which the inlet pressure switch is normally open, used for the protection of shutdown when the inlet pressure is too low.

The exhaust pressure switch is normally closed, which is used for stopping protection when the exhaust pressure is too high. The specific control principle is: when the air source pressure reaches the upper limit of the intake pressure switch set value, the pressure switch is closed, press the start button at this time, the motor runs, the intake electromagnetic power is opened, the exhaust solenoid valve is disconnected, and the fan starts running and the compressor works normally.

When the exhaust pressure rises to the upper limit of the exhaust pressure switch set value, the exhaust pressure switch acts and the machine stops running. At the same time, the inlet solenoid valve is disconnected and closed.

When the exhaust pressure drops to the lower limit set by the exhaust pressure switch, the exhaust pressure switch is closed, and the machine continues to operate. The oxygen bottling machine needs to be manually reset and run. When the air source pressure falls to the lower limit of the intake pressure switch set value, the intake pressure switch is disconnected, and the machine stops running in standby state.

When the air source pressure is restored to the upper limit of the inlet pressure switch set value, the inlet pressure switch is closed and the machine continues to run.

Temperature protection, each stage of the compressor is equipped with temperature sensor, when the exhaust temperature of a stage is too high, the alarm will stop.

Operation & Maintenance

Keep the Oil Free Oxygen Compressor clean, observe diligently, deal with abnormal situation in time, do not let the compressor work with failure. Compressor disassembly maintenance or replacement parts must be carried out by experienced maintenance personnel or the production plant to avoid unnecessary losses.

It is necessary to check whether the voltage and current deviation is too large to prevent over-voltage or under-voltage operation and damage to the motor. 

During the normal operation of the compressor, it is easy not to disconnect the power supply. In case of power failure or power failure for other reasons, the power supply must be cut off to stop the work. 

If any abnormal sound is found during the operation of the compressor, it should be stopped immediately for inspection.

 

Show

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Usage: Hydrogen, Nitrogen, Oxygen, Ozone
Purpose: Gas Filling
Parts: Valve
Application Fields: Medical
Noise Level: Low
Machine Size: Medium
Samples:
US$ 7720/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How Do Gas Air Compressors Compare to Diesel Air Compressors?

When comparing gas air compressors to diesel air compressors, there are several factors to consider, including fuel efficiency, power output, cost, maintenance requirements, and environmental impact. Here’s a detailed explanation of how these two types of air compressors compare:

1. Fuel Efficiency:

Diesel air compressors are generally more fuel-efficient compared to gas air compressors. Diesel engines have higher energy density and better overall efficiency than gasoline engines. This means that diesel compressors can produce more work output per unit of fuel consumed, resulting in lower fuel costs and longer runtimes between refueling.

2. Power Output:

Diesel air compressors typically provide higher power output compared to gas air compressors. Diesel engines are known for their robustness and ability to generate higher torque, making them suitable for heavy-duty applications that require a larger volume of compressed air or higher operating pressures.

3. Cost:

In terms of upfront cost, gas air compressors are generally more affordable compared to diesel air compressors. Gasoline engines and components are typically less expensive than their diesel counterparts. However, it’s important to consider long-term costs, including fuel expenses and maintenance, which can vary depending on factors such as fuel prices and usage patterns.

4. Maintenance Requirements:

Diesel air compressors often require more regular maintenance compared to gas air compressors. This is because diesel engines have additional components such as fuel filters, water separators, and injector systems that need periodic servicing. Gas air compressors, on the other hand, may have simpler maintenance requirements, resulting in reduced maintenance costs and time.

5. Environmental Impact:

When it comes to environmental impact, diesel air compressors produce higher emissions compared to gas air compressors. Diesel engines emit more particulate matter, nitrogen oxides (NOx), and carbon dioxide (CO2) compared to gasoline engines. Gas air compressors, especially those powered by propane, tend to have lower emissions and are considered more environmentally friendly.

6. Portability and Mobility:

Gas air compressors are generally more portable and easier to move compared to diesel air compressors. Gasoline engines are typically lighter and more compact, making gas air compressors suitable for applications where mobility is essential, such as construction sites or remote locations.

It’s important to note that the specific requirements of the application and the availability of fuel sources also play a significant role in choosing between gas air compressors and diesel air compressors. Each type has its own advantages and considerations, and the choice should be based on factors such as the intended usage, operating conditions, budget, and environmental considerations.

In conclusion, gas air compressors are often more affordable, portable, and suitable for lighter applications, while diesel air compressors offer higher power output, fuel efficiency, and durability for heavy-duty operations. Consider the specific needs and factors mentioned above to determine the most appropriate choice for your particular application.

air compressor

How Do You Transport Gas Air Compressors to Different Job Sites?

Transporting gas air compressors to different job sites requires careful planning and consideration of various factors. Here’s a detailed explanation:

1. Equipment Size and Weight:

The size and weight of the gas air compressor are crucial factors to consider when planning transportation. Gas air compressors come in different sizes and configurations, ranging from portable units to larger, skid-mounted or trailer-mounted compressors. Assess the dimensions and weight of the compressor to determine the appropriate transportation method.

2. Transportation Modes:

Gas air compressors can be transported using different modes of transportation, depending on their size, weight, and distance to the job site:

  • Truck or Trailer: Smaller gas air compressors can be loaded onto a truck bed or trailer for transportation. Ensure that the vehicle or trailer has the necessary capacity to accommodate the weight and dimensions of the compressor.
  • Flatbed or Lowboy Trailer: Larger gas compressors or skid-mounted units may require transportation on a flatbed or lowboy trailer. These trailers are designed to carry heavy equipment and provide stability during transportation.
  • Shipping Container: For long-distance transportation or international shipments, gas air compressors can be transported in shipping containers. The compressor must be properly secured and protected within the container to prevent any damage during transit.

3. Securing and Protection:

It is essential to secure the gas air compressor properly during transportation to prevent shifting or damage. Use appropriate tie-down straps, chains, or fasteners to secure the compressor to the transport vehicle or trailer. Protect the compressor from potential impacts, vibrations, and weather conditions by using suitable covers, padding, or weatherproof enclosures.

4. Permits and Regulations:

Depending on the size and weight of the gas air compressor, special permits or escorts may be required for transportation. Familiarize yourself with local, state, and federal regulations regarding oversize or overweight loads, and obtain the necessary permits to ensure compliance with transportation laws.

5. Route Planning:

Plan the transportation route carefully, considering factors such as road conditions, height and weight restrictions, bridges, tunnels, and any other potential obstacles. Identify alternative routes if needed, and communicate with transportation authorities or agencies to ensure a smooth and safe journey.

6. Equipment Inspection and Maintenance:

Prior to transportation, conduct a thorough inspection of the gas air compressor to ensure it is in proper working condition. Check for any leaks, damage, or loose components. Perform routine maintenance tasks, such as oil changes, filter replacements, and belt inspections, to minimize the risk of equipment failure during transportation.

In summary, transporting gas air compressors to different job sites requires considering factors such as equipment size and weight, choosing appropriate transportation modes, securing and protecting the compressor, obtaining necessary permits, planning the route, and conducting equipment inspection and maintenance. Careful planning and adherence to transportation regulations contribute to the safe and efficient transportation of gas air compressors.

air compressor

What Is a Gas Air Compressor?

A gas air compressor is a type of air compressor that is powered by a gas engine instead of an electric motor. It uses a combustion engine, typically fueled by gasoline or diesel, to convert fuel energy into mechanical energy, which is then used to compress air. Here’s a detailed explanation of a gas air compressor:

1. Power Source:

A gas air compressor utilizes a gas engine as its power source. The engine can be fueled by gasoline, diesel, or other types of combustible gases, such as natural gas or propane. The combustion engine drives the compressor pump to draw in air and compress it to a higher pressure.

2. Portable and Versatile:

Gas air compressors are often designed to be portable and versatile. The gas engine provides mobility, allowing the compressor to be easily transported and used in different locations, including remote job sites or areas without access to electricity. This makes gas air compressors suitable for applications such as construction projects, outdoor activities, and mobile service operations.

3. Compressor Pump:

The compressor pump in a gas air compressor is responsible for drawing in air and compressing it. The pump can be of various types, including reciprocating, rotary screw, or centrifugal, depending on the specific design of the gas air compressor. The pump’s role is to increase the pressure of the incoming air, resulting in compressed air that can be used for various applications.

4. Pressure Regulation:

Gas air compressors typically feature pressure regulation mechanisms to control the output pressure of the compressed air. This allows users to adjust the pressure according to the requirements of the specific application. The pressure regulation system may include pressure gauges, regulators, and safety valves to ensure safe and reliable operation.

5. Applications:

Gas air compressors find applications in a wide range of industries and activities. They are commonly used in construction sites for powering pneumatic tools such as jackhammers, nail guns, and impact wrenches. Gas air compressors are also utilized in agriculture for operating air-powered machinery like sprayers and pneumatic seeders. Additionally, they are employed in recreational activities such as inflating tires, sports equipment, or inflatable structures.

6. Maintenance and Fuel Considerations:

Gas air compressors require regular maintenance, including engine servicing, oil changes, and filter replacements, to ensure optimal performance and longevity. The type of fuel used in the gas engine also needs to be considered. Gasoline-powered compressors are commonly used in smaller applications, while diesel-powered compressors are preferred for heavy-duty and continuous operation due to their higher fuel efficiency and durability.

Overall, a gas air compressor is an air compressor that is powered by a gas engine, offering mobility and versatility. It provides compressed air for various applications and is commonly used in construction, agriculture, and outdoor activities. Regular maintenance and fuel considerations are essential to ensure reliable operation and optimal performance.

China wholesaler 20m3 Air Cooling Oil Free Medicacl High Pressure Oxygen Compressor Manufacturers   air compressor priceChina wholesaler 20m3 Air Cooling Oil Free Medicacl High Pressure Oxygen Compressor Manufacturers   air compressor price
editor by CX 2024-04-11

China OEM Japan Technology Portable Oilless 8bar 25bar Water Injection 100% Oil Free Screw Air Compressor with Inverter with high quality

Product Description

 

TECHNICAL DATA
 
Model Power Pressure (bar) Air Flow (m3/min) Noise Level dBA Outlet Size Weight (kgs) Lubricating Water(L) Filter Element (B)-(Z) Dimension LxWxH (mm)
OF-7.5F 7.5kw 10hp 8 1.0 60 RP 3/4 400 22 (25cm) 1 1000*720*1050
OF-11F 11kw 15hp 8 1.6 63 460 1156*845*1250
OF-15F 15kw 20hp 8 2.5 65 RP 1 620 28 (50cm) 1 1306*945*1260
OF-18F 18.5kw 25hp 8 3.0 67 750 33 1520*1060*1390
OF-22F 22kw 30hp 8 3.6 68 840 33 1520*1060*1390
OF-30F 30kw 40hp 8 5.0 69 RP 11/4 1050 66 (25cm) 5 1760*1160*1490
OF-37F 37kw 50hp 8 6.2 71 1100 1760*1160*1490
OF-45S 45kw 60hp 8 7.3 74 RP 11/2 1050 88 1760*1160*1490
OF-45F 45kw 60hp 8 7.3 74 1200 1760*1160*1490
OF-55S 55kw 75hp 8 10 74 RP 2 1250 110 (50cm) 5 1900*1250*1361
OF-55F 55kw 75hp 8 10 74 2200 (50cm) 7 2350*1250*1880
OF-75S 75kw 100hp 8 13 75 1650 (50cm) 5 1900*1250*1361
OF-75F 75kw 100hp 8 13 75 2500 (50cm) 7 2550*1620*1880
OF-90S 90kw 125hp 8 15 76 2050 (50cm) 5 1900*1250*1361
OF-90F 90kw 125hp 8 15 76 2650 (50cm) 7 2550*1620*1880
OF-110S 110kw 150hp 8 20 78 DN 65 2550 130 (50cm) 12 2200*1600*1735
OF-110F 110kw 150hp 8 20 78 3500 130 3000*1700*2250
OF-132S 132kw 175hp 8 23 80 2700 130 2200*1600*2250
OF-160S 160kw 220hp 8 26 82 2900 165 2200*1600*2250
OF-185S 185kw 250hp 8 30 83 DN 100 3300 180 (50cm) 22 2860*1800*1945
OF-200S 200kw 270hp 8 33 83 3500 2860*1800*1945
OF-220S 220kw 300hp 8 36 85 4500 2860*2000*2300
OF-250S 250kw 340hp 8 40 85 4700 2860*2000*2300
OF-315S 315kw 480hp 8 50 90 5000 2860*2000*2300

 F– air cooling method     S– water cooling method

ZheJiang Xihu (West Lake) Dis. specializes in the R&D, manufacturing, sales and after sales service of variety of compressors, which include oil-free air compressors, oil-injected air compressor and air end, special gas compressors and post-processing equipment etc, under the brand name “Xihu (West Lake) Dis.r”, “OFAC”. To provide both high-quality, eco-friendly, high efficiency air system solution and stable technical service with our customers.

We workshop located in HangZhou and HangZhou city, ZheJiang Province, with 4000 square meters’ area, and new workshop was built in HangZhou city, ZheJiang Province, with 3000 square meters’ area. As a sino-ZheJiang join venture with CNY30, 000, 000 capital, we introduced the CHINAMFG technology from Japan(Mitsui) in 2013. From learning to optimization and self-dependent innovation based on the original, we devote to doing research and develpment compressor continuously. We also obtained a number of intellectual property rights, inventions, Utility model, appearance and other patents. Strictly implement the ISO 9001 quality system certification, and the oil-free machine series have passed the test of TUV Class0, CE. It is widely used for Pharmaceuticals, food, masks, melt-blown cloth, spraying, precision electronics, biological fermentation, oxygen production, nitrogen production, nitrogen production, special gas recovery, solar energy, petroleum, sandblasting, lithium batteries, condiments, wine production and other high standard industry.

We owned complete sales service system, focusing on cultivating technical talents, shaping employees with a craftmanship spirit.

FAQ

Q1: Warranty terms of your machine?
A1: Two year warranty for the machine and technical support according to your needs.

Q2: Will you provide some spare parts of the machines?
A2: Yes, of course.

Q3: What about product package?
A3: We pack our products strictly with standard seaworthy case. Rcommend wooden box.

Q4: Can you use our brand?
A4: Yes, OEM is available.

Q5: How long will you take to arrange production?
A5: Immediate delivery for stock products. 380V 50HZ we can delivery the goods within 3-15 days. Other  voltage or other color we will delivery within 30-45 days.

Q6: How Many Staff Are There In your Factory?
A6: About 100.
 
Q7: What’s your factory’s production capacity?
A7: About 550-650 units per month.

Q8: What the exactly address of your factory?
A8: Our first workshop located in HangZhou, ZheJiang , second workshop located in HangZhou, ZheJiang ,  China.

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 2 Years
Warranty: 2 Years
Lubrication Style: Oil-free
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How Do You Select the Right Size Screw Compressor for Your Needs?

Choosing the right size screw compressor is crucial to ensure optimal performance, energy efficiency, and cost-effectiveness for your specific compressed air or gas requirements. Here’s a detailed explanation of the selection process:

Selecting the right size screw compressor involves considering several key factors:

  • 1. Air or Gas Demand: Determine your compressed air or gas demand by assessing the total required flow rate (measured in cubic feet per minute or liters per second) and the operating pressure (measured in pounds per square inch or bar). This information helps establish the compressor’s capacity requirements.
  • 2. Duty Cycle: Evaluate your operation’s duty cycle, which refers to the percentage of time the compressor will be running. Duty cycles can vary from continuous operation to intermittent or seasonal usage. The duty cycle affects the compressor’s sizing, as it determines the required compressor output and influences the compressor’s cooling and maintenance needs.
  • 3. Ambient Conditions: Consider the environmental conditions in which the compressor will operate. Factors such as temperature, humidity, and altitude can impact the compressor’s performance and cooling requirements. Ensure that the selected compressor is suitable for the specific ambient conditions of your facility.
  • 4. System Pressure Requirements: Determine the minimum and maximum operating pressure requirements for your application. This information is essential in selecting a compressor that can consistently deliver the required pressure range throughout its operating range.
  • 5. Efficiency Considerations: Evaluate the energy efficiency of different compressor models. Look for compressors with high energy efficiency ratings, such as those certified by organizations like the Air Compressor and Gas Association (CAGI) or ENERGY STAR. Energy-efficient compressors can significantly reduce operating costs over the equipment’s lifespan.
  • 6. Future Expansion: Consider any anticipated growth or changes in your compressed air or gas demand. If you expect increased demand in the future, it’s advisable to select a compressor with some extra capacity to accommodate future expansion without requiring immediate replacement.
  • 7. Maintenance and Serviceability: Assess the maintenance requirements and serviceability of different compressor models. Look for features that make routine maintenance tasks, such as filter changes or oil checks, easily accessible and convenient. Consider the availability of service technicians and spare parts for the chosen compressor brand or model.
  • 8. Manufacturer and Supplier Support: Research the reputation and track record of compressor manufacturers and suppliers. Choose established brands known for producing reliable, high-quality equipment. Consider factors such as warranty coverage, technical support availability, and the proximity of service centers.

Once you have gathered the necessary information and considered the factors mentioned above, you can consult with compressor manufacturers or suppliers who can provide expert advice and assist in selecting the right size screw compressor for your specific needs. They can perform detailed calculations, taking into account the factors discussed, to recommend a compressor that matches your requirements and provides optimal performance.

It’s important to note that selecting the right size screw compressor is a critical decision, and professional guidance is highly recommended to ensure an accurate assessment and proper matching of the compressor to your specific needs.

In summary, selecting the right size screw compressor involves assessing your compressed air or gas demand, duty cycle, ambient conditions, pressure requirements, efficiency considerations, future expansion plans, maintenance requirements, and manufacturer support. By considering these factors and seeking expert advice, you can choose a screw compressor that meets your needs and delivers reliable, efficient performance.

air compressor

Can Screw Compressors Be Used for Refrigeration?

Yes, screw compressors can be used for refrigeration applications. Here’s a detailed explanation:

Screw compressors are versatile and widely used in various industrial applications, including refrigeration. They are known for their efficiency, reliability, and ability to handle high-capacity refrigeration systems. Screw compressors work by compressing refrigerant gas, increasing its pressure and temperature, and then transferring the heat to the surrounding environment.

Here are some key points regarding the use of screw compressors in refrigeration:

1. Industrial Refrigeration Systems:

Screw compressors are commonly employed in large-scale industrial refrigeration systems, such as those used in cold storage facilities, food processing plants, beverage production, and HVAC systems for commercial buildings. These systems require high cooling capacities and continuous operation, making screw compressors an ideal choice.

2. Positive Displacement Compressors:

Screw compressors belong to the category of positive displacement compressors. They use two interlocking helical rotors (screws) to trap and compress the refrigerant gas. This design ensures a continuous flow of refrigerant and allows for efficient compression over a wide range of operating conditions.

3. Oil-Injected and Oil-Free Types:

Screw compressors can be either oil-injected or oil-free. Oil-injected screw compressors use oil for lubrication and cooling, which helps reduce friction and extend the compressor’s lifespan. In contrast, oil-free screw compressors use specialized coatings and materials to eliminate the need for oil, making them suitable for applications where oil contamination is a concern, such as in the pharmaceutical or food industries.

4. Multi-Stage Compression:

In refrigeration applications, screw compressors are often used in multi-stage configurations to achieve higher pressure ratios and improve overall system efficiency. Multi-stage compression involves compressing the refrigerant gas in multiple stages, typically with intermediate cooling between each stage, to reduce the work required for compression and enhance system performance.

5. Variable Speed Control:

Screw compressors can be equipped with variable speed drives (VSD) that allow for precise control of the compressor’s rotational speed. VSD technology enables the compressor to adjust its capacity according to the refrigeration load, resulting in energy savings and improved system performance.

6. System Integration:

Screw compressors are often integrated into complex refrigeration systems, working in tandem with other components such as condensers, evaporators, expansion valves, and control systems. This integration ensures efficient heat transfer, proper refrigerant flow, and effective temperature control.

It’s important to note that the selection of a screw compressor for refrigeration applications should consider factors such as cooling capacity requirements, operating conditions, refrigerant type, system configuration, and specific industry regulations.

In summary, screw compressors are well-suited for refrigeration applications, especially in industrial settings. Their efficiency, reliability, and capacity make them a popular choice for large-scale refrigeration systems. Whether in cold storage facilities, food processing plants, or HVAC systems, screw compressors play a crucial role in maintaining optimal temperatures and preserving perishable goods.

air compressor

What Are the Advantages of Using a Screw Compressor?

Using a screw compressor offers several advantages in various applications. Here’s a detailed explanation:

High Efficiency:

Screw compressors are known for their high efficiency in converting electrical power into compressed air or gas. The rotary positive displacement design of screw compressors allows them to deliver a large volume of compressed air or gas with minimal energy loss. This high efficiency results in cost savings and reduced energy consumption compared to other types of compressors.

Continuous Operation:

One of the key advantages of screw compressors is their ability to provide a continuous flow of compressed air or gas. The interlocking helical rotors ensure a smooth and continuous compression process without pulsations. This feature is particularly beneficial in applications that require a steady and reliable source of compressed air, such as in manufacturing plants and industrial processes.

Compact Design:

Screw compressors are known for their compact design, which allows for space-saving installation. They have a relatively small footprint compared to other types of compressors, making them suitable for applications where space is limited. The compact design also facilitates ease of installation and integration into existing systems.

Low Vibration and Noise Levels:

Screw compressors are designed to operate with low vibration levels, resulting in smooth and quiet operation. The interlocking rotors and balanced design help in minimizing vibrations, reducing the need for additional vibration isolation measures. The low noise levels make screw compressors suitable for applications where noise reduction is important, such as in office environments or noise-sensitive industrial settings.

Wide Range of Capacities:

Screw compressors are available in a wide range of capacities, allowing for flexibility in meeting different compressed air or gas requirements. Whether it’s a small-scale application or a large industrial process, there are screw compressors available to match the specific capacity needs. This versatility makes screw compressors suitable for a variety of industries and applications.

Oil-Injected and Oil-Free Options:

Screw compressors are offered in both oil-injected and oil-free variants, providing options to meet different application requirements. Oil-injected screw compressors use lubricating oil for cooling, sealing, and reducing friction between the rotors. They are commonly used in industrial applications where a small amount of oil in the compressed air is acceptable. Oil-free screw compressors, on the other hand, eliminate the need for oil and provide contaminant-free compressed air. They are preferred in industries such as food and beverage, pharmaceuticals, and electronics, where oil-free air is critical.

Overall, using a screw compressor offers advantages such as high efficiency, continuous operation, compact design, low vibration and noise levels, capacity flexibility, and options for oil-injected or oil-free operation. These benefits make screw compressors a popular choice in various industries for a wide range of applications.

China OEM Japan Technology Portable Oilless 8bar 25bar Water Injection 100% Oil Free Screw Air Compressor with Inverter   with high qualityChina OEM Japan Technology Portable Oilless 8bar 25bar Water Injection 100% Oil Free Screw Air Compressor with Inverter   with high quality
editor by CX 2024-04-11

China best Low Pressure Industrial Electric Oil Free Small Silent Rotary Gas Station Compressor with high quality

Product Description

Detailed Photos

Low Pressure Industrial Electric Oil Free Small Silent Rotary Gas Station Compressor

Description&Advantages

Product Descriptions:

The gas station, which takes natural gas input through pipelines, increases the pressure on-site and then either directly fills or stores the gas in fixed storage cylinder groups (wells) for refueling CNG vehicles with CNG. The process system consists of a pressure regulation and metering device, desulfurization and dehydration equipment, a natural gas compressor, CNG storage facilities, a sequential control device, CNG refueling facilities, safety protection devices for refueling process equipment, electrical devices, CNG pipelines and components, etc

Advantages:
Our products, incorporating technology from Austria’s LMF and Germany’s CHINAMFG Demag companies, exhibit high reliability. Wearable parts like gas valves and piston rings use products from Austria’s Hoerbiger company, with a lifespan exceeding 8000 hours. The system supports soft starting, allowing frequent start and stop cycles for the compressor.  It features a wide intake range for broad adaptability. The overall skid-mounted structure results in low noise and is easy to install in urban areas, leading to investment savings.
It is equipped with a CHINAMFG PLC control system for high automation, ABB soft start (or variable frequency), and features automatic shutdown with audible and visual alarms in case of faults

Product Parameters

 

Model Inlet Pressure
(Mpa)
Outlet Pressure
(Mpa)
Capacity
(Nm3/h)
Power
(Kw)
Remarks
ZF-0.16/6-250 0.6 25 68 22  
VF-2.4/8-250 0.8 25 1300 220  
VF-0.76/10-250 1.0 25 500 Q6135DR1  
VF-2.2/10-250 1.0 25 1452 220-8  
VF-3.2/(2.5-4)-250 0.25-0.4 25 670-1000 270  
VF-2/(10-16)-250 1.0-1.6 25 1320-2000 280  
VF-2.5/3-210 0.3 21 600 132  
VF-0.11/(70-200)-250 7-20 25 468-1326 30  
VF-2.5/(0.8-1.6)-250 0.08-0.16 25 270-390 90  
VF-2/(2-3)-250 0.2-0.3 25 360-480 110  
VF-1.1/(5-6)-250 0.5-0.6 25 396-462 90  
VF-0.54/30-250 3.0 25 1004 110  
VF-0.8/30-250 3.0 25 1488 160  
VF-0.28/(40-80)-250 4.0-8.0 25 688-1360 90  
VFD-0.36/(20-200)-250 2.0-20 25 680-2210 110 Soundproof Cabin
VFD-0.32/(20-200)-250 2.0-20 25 600-1700 90 Soundproof Cabin
VFD-0.28/(20-200)-250 2.0-20 25 525-1430 75 Soundproof Cabin
VFD-0.16/(20-200)-250 2.0-20 25 600 55 Soundproof Cabin
Note: This series of CNG refueling station compressors can be customized with the following parameters: Pressure: 0.2-20Mpa, Flow rate: 400-1200 Nm³/h.

Our Factory

 

Part of Customer Visit

 

Certifications & Testing

 

Related Product

 

FAQ

Q:Are you a factory?

A:Yes, we are indeed a factory. We specialize in manufacturing high-quality Air/Gas Compressors and are proud to be a primary source for these products.

Q:How long is your delivery time?
A:It varies depending on the specific situation. For our standard configuration compressors, the delivery time is around 30 days. For customized compressors, it usually takes about 30-45 days.

Q:What technical support do you offer?
A:We offer comprehensive technical support to our clients, including remote assistance for installation and commissioning processes. Additionally, we have a team of seasoned engineers ready to be deployed to international client locations for meticulous on-site debugging, installation, and post-installation services.

Q:What is your warranty period?
A:Our warranty policy is valid for a period of 18 months from the date of commissioning at the end customer’s site or 21 months from the date of receipt by the purchaser, whichever comes first. This comprehensive coverage is designed to ensure total customer satisfaction and the reliability of our products

Q:How do you package the compressors?
A:For smaller compressors, we utilize robust plywood boxes that conform to export specifications.
    For the larger units, we strategically place them in freight containers, implementing secure fastening methods to safeguard            against any potential damage during the shipping process.

Q:What are your payment terms?
A:Usually, the payment is made by T/T with a 30% down payment CHINAMFG confirmation of the Proforma Invoice (PI), and the balance is to be paid after inspection and before shipment. We accept both TT and L/C at sight.

Send message  Get product Offer & Brochure!!!

 ↓↓↓

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Local Teams
Warranty: 18 Months
Lubrication Style: Customized
Cooling System: Air Cooling/Water Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Customized
Samples:
US$ 40000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How Do You Maintain a Gas Air Compressor?

Maintaining a gas air compressor is essential to ensure its optimal performance, longevity, and safe operation. Regular maintenance helps prevent breakdowns, extends the compressor’s lifespan, and promotes efficient operation. Here are some key maintenance steps for a gas air compressor:

1. Read the Manual:

Before performing any maintenance tasks, thoroughly read the manufacturer’s manual specific to your gas air compressor model. The manual provides important instructions and guidelines for maintenance procedures, including recommended intervals and specific maintenance requirements.

2. Check and Change the Oil:

Gas air compressors typically require regular oil changes to maintain proper lubrication and prevent excessive wear. Check the oil level regularly and change it according to the manufacturer’s recommendations. Use the recommended grade of oil suitable for your compressor model.

3. Inspect and Replace Air Filters:

Inspect the air filters regularly and clean or replace them as needed. Air filters prevent dust, debris, and contaminants from entering the compressor’s internal components. Clogged or dirty filters can restrict airflow and reduce performance. Follow the manufacturer’s guidelines for filter cleaning or replacement.

4. Drain Moisture from the Tank:

Gas air compressors accumulate moisture in the compressed air, which can lead to corrosion and damage to the tank and internal components. Drain the moisture from the tank regularly to prevent excessive moisture buildup. Refer to the manual for instructions on how to properly drain the moisture.

5. Check and Tighten Connections:

Regularly inspect all connections, fittings, and hoses for any signs of leaks or loose connections. Tighten any loose fittings and repair or replace damaged hoses or connectors. Leaks can lead to reduced performance and inefficiency.

6. Inspect Belts and Pulleys:

If your gas air compressor has belts and pulleys, inspect them for wear, tension, and proper alignment. Replace any worn or damaged belts and ensure proper tension to maintain optimal performance.

7. Clean the Exterior and Cooling Fins:

Keep the exterior of the gas air compressor clean from dirt, dust, and debris. Use a soft cloth or brush to clean the surfaces. Additionally, clean the cooling fins regularly to remove any accumulated debris that can impede airflow and cause overheating.

8. Schedule Professional Servicing:

While regular maintenance can be performed by the user, it is also important to schedule professional servicing at recommended intervals. Professional technicians can perform thorough inspections, conduct more complex maintenance tasks, and identify any potential issues that may require attention.

9. Follow Safety Precautions:

When performing maintenance tasks on a gas air compressor, always follow safety precautions outlined in the manual. This may include wearing protective gear, disconnecting the power source, and ensuring proper ventilation in confined spaces.

By following these maintenance steps and adhering to the manufacturer’s guidelines, you can keep your gas air compressor in optimal condition, prolong its lifespan, and ensure safe and efficient operation.

air compressor

Can Gas Air Compressors Be Used for Natural Gas Compression?

Gas air compressors are not typically used for natural gas compression. Here’s a detailed explanation:

1. Different Compressed Gases:

Gas air compressors are specifically designed to compress atmospheric air. They are not typically designed or suitable for compressing natural gas. Natural gas, which is primarily composed of methane, requires specialized compressors designed to handle the unique properties and characteristics of the gas.

2. Safety Considerations:

Natural gas compression involves handling a flammable and potentially hazardous substance. Compressing natural gas requires specialized equipment that meets stringent safety standards to prevent leaks, minimize the risk of ignition or explosion, and ensure the safe handling of the gas. Gas air compressors may not have the necessary safety features or materials to handle natural gas safely.

3. Equipment Compatibility:

Natural gas compression systems typically include components such as gas compressors, gas coolers, separators, and control systems that are specifically designed and engineered for the compression and handling of natural gas. These components are built to withstand the specific demands and conditions associated with natural gas compression, including the high pressures and potential presence of impurities.

4. Efficiency and Performance:

Compressing natural gas requires specialized compressors that can handle the high-pressure ratios and volumetric flow rates associated with the gas. Gas air compressors are generally not designed to achieve the same compression ratios and performance levels required for natural gas compression. Using gas air compressors for natural gas compression would likely result in inefficient operation and suboptimal performance.

5. Regulatory Compliance:

Compressing natural gas is subject to various regulations and standards to ensure safety, environmental protection, and compliance with industry guidelines. These regulations often dictate specific requirements for equipment, materials, and operating procedures in natural gas compression systems. Gas air compressors may not meet these regulatory requirements for natural gas compression.

6. Industry Standards and Practices:

The natural gas industry has well-established standards and best practices for equipment selection, installation, and operation in gas compression systems. These standards are based on the specific requirements and characteristics of natural gas. Gas air compressors do not align with these industry standards and practices, which are essential for safe and efficient natural gas compression.

In summary, gas air compressors are not suitable for natural gas compression. Natural gas compression requires specialized equipment designed to handle the unique properties and safety considerations associated with the gas. Compressors specifically engineered for natural gas compression offer the necessary performance, safety features, and regulatory compliance required for efficient and reliable operation in natural gas compression systems.

air compressor

Can Gas Air Compressors Be Used in Remote Locations?

Yes, gas air compressors are well-suited for use in remote locations where access to electricity may be limited or unavailable. Their portability and reliance on gas engines make them an ideal choice for providing a reliable source of compressed air in such environments. Here’s a detailed explanation of how gas air compressors can be used in remote locations:

1. Independence from Electrical Grid:

Gas air compressors do not require a direct connection to the electrical grid, unlike electric air compressors. This independence from the electrical grid allows gas air compressors to be used in remote locations, such as wilderness areas, remote job sites, or off-grid locations, where it may be impractical or cost-prohibitive to establish electrical infrastructure.

2. Mobility and Portability:

Gas air compressors are designed to be portable and easy to transport. They are often equipped with handles, wheels, or trailers, making them suitable for remote locations. The gas engine powering the compressor provides mobility, allowing the compressor to be moved to different areas within the remote location as needed.

3. Fuel Versatility:

Gas air compressors can be fueled by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This fuel versatility ensures that gas air compressors can adapt to the available fuel sources in remote locations. For example, if gasoline or diesel is readily available, the gas air compressor can be fueled with these fuels. Similarly, if natural gas or propane is accessible, the compressor can be configured to run on these gases.

4. On-Site Power Generation:

In remote locations where electricity is limited, gas air compressors can serve as on-site power generators. They can power not only the compressor itself but also other equipment or tools that require electricity for operation. This versatility makes gas air compressors useful for a wide range of applications in remote locations, such as powering lights, tools, communication devices, or small appliances.

5. Off-Grid Operations:

Gas air compressors enable off-grid operations, allowing tasks and activities to be carried out in remote locations without relying on external power sources. This is particularly valuable in industries such as mining, oil and gas exploration, forestry, or construction, where operations may take place in remote and isolated areas. Gas air compressors provide the necessary compressed air for pneumatic tools, drilling equipment, and other machinery required for these operations.

6. Emergency Preparedness:

Gas air compressors are also beneficial for emergency preparedness in remote locations. In situations where natural disasters or emergencies disrupt the power supply, gas air compressors can provide a reliable source of compressed air for essential equipment and systems. They can power emergency lighting, communication devices, medical equipment, or backup generators, ensuring operational continuity in critical situations.

7. Adaptability to Challenging Environments:

Gas air compressors are designed to withstand various environmental conditions, including extreme temperatures, humidity, dust, and vibrations. This adaptability to challenging environments makes them suitable for use in remote locations, where environmental conditions may be harsh or unpredictable.

Overall, gas air compressors can be effectively used in remote locations due to their independence from the electrical grid, mobility, fuel versatility, on-site power generation capabilities, suitability for off-grid operations, emergency preparedness, and adaptability to challenging environments. These compressors provide a reliable source of compressed air, enabling a wide range of applications in remote settings.

China best Low Pressure Industrial Electric Oil Free Small Silent Rotary Gas Station Compressor   with high qualityChina best Low Pressure Industrial Electric Oil Free Small Silent Rotary Gas Station Compressor   with high quality
editor by CX 2024-04-10

China Best Sales 125HP Oil Free Screw Air Compressor (SCR125G) Dry Oil Free Ghh Oil-Free Ariend Ultracoat TM Super Coating with Good quality

Product Description

If you are interested in any of our

FAQ

1   What trade terms do we provide? What kind of settlement currency do we offer?

Trade term :CIF ,CFR ,FOB,Ex-Works 
As far Our business traded in Dollars ,Euros and RMB .

2   How long is our delivery?

Our standard delivery time is 30-40 days after confirmation order & receiving recipets for standard compressors, for the other non standard requirement will be discussed case by case.

3   What is the voltage of the compressor?

The available voltage include 380V/50HZ/3Phase, 400V/50HZ/3P, 415V/50HZ/3P, 220V/60HZ/3P, 380V/60HZ/3P, 440V/60HZ/3P. At the same time we provide other voltage  according to customer requirement.

4  Can our compressor run in high temperature environment? What is the working temperature range for our machine?

Yes ,our machine would run in high temperature environment ,until now our products have been sold to many countries which would meet high temperature in summer ,such like Iraq, Saudi Arabia, Egypt, Algeria, etc. 
Work temperature range :1-45 ºC(33.8ºF-113ºF)

5  What’s the min. Order requirement ?

Min. Order requirement is 1PCS. 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Lubrication Style: Oil-free
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Structure Type: Closed Type
Installation Type: Stationary Type
Customization:
Available

|

air compressor

What Is the Lifespan of a Typical Screw Compressor?

The lifespan of a typical screw compressor can vary depending on several factors, including the quality of the equipment, maintenance practices, operating conditions, and usage patterns. Here’s a detailed explanation:

The lifespan of a screw compressor is typically measured in operating hours, which refers to the cumulative hours the compressor has been in operation. While it’s challenging to provide an exact lifespan, as it can vary significantly, screw compressors are generally designed to have a long service life, often ranging from 20,000 to 100,000 operating hours.

Several factors can influence the lifespan of a screw compressor:

  • 1. Quality of Construction: The quality of construction and materials used in the compressor’s manufacturing plays a crucial role in its lifespan. Compressors built with high-quality components and robust construction tend to have a longer service life compared to those with lower-quality materials.
  • 2. Maintenance Practices: Regular and proper maintenance is essential to extend the lifespan of a screw compressor. Following the manufacturer’s recommended maintenance schedule, including tasks such as oil changes, filter replacements, and inspection of critical components, helps ensure optimal performance and reliability. Neglecting maintenance can lead to premature wear and potential breakdowns.
  • 3. Operating Conditions: The operating conditions in which the compressor operates can impact its lifespan. Factors such as temperature, humidity, and the presence of contaminants in the ambient air can affect the compressor’s performance and longevity. Compressors operated in clean, well-ventilated environments with controlled temperature and humidity conditions tend to have longer lifespans.
  • 4. Load and Usage Patterns: The load and usage patterns of the compressor also influence its lifespan. Compressors operated at or near their maximum capacity for prolonged periods may experience higher wear and tear compared to those operated within their recommended operating range. Compressors subjected to frequent start-stop cycles or continuous operation may have different lifespans based on the stress placed on their components.
  • 5. Maintenance and Repairs: The response to maintenance and repair needs can impact the compressor’s lifespan. Timely addressing of maintenance issues and prompt repairs when faults or malfunctions occur can prevent further damage and help prolong the compressor’s lifespan.
  • 6. Manufacturer and Design: The reputation and expertise of the manufacturer play a role in determining the compressor’s lifespan. Established manufacturers with a track record of producing reliable and durable equipment often design their compressors to have longer lifespans. It’s advisable to choose compressors from reputable manufacturers known for their quality and reliability.

It’s important to note that while a screw compressor may have a designed lifespan, it doesn’t necessarily mean it will fail immediately after reaching that threshold. With proper maintenance and care, compressors can often exceed their expected lifespan. On the other hand, neglecting maintenance or subjecting the compressor to harsh operating conditions can shorten its lifespan.

Regular monitoring of the compressor’s performance, including parameters such as discharge temperature, vibration levels, and energy consumption, can help identify any potential issues and take corrective actions to maintain the compressor’s reliability and extend its lifespan.

In summary, the lifespan of a typical screw compressor can range from 20,000 to 100,000 operating hours, depending on factors such as the quality of construction, maintenance practices, operating conditions, usage patterns, and manufacturer reputation. Adhering to proper maintenance practices, operating the compressor within its recommended parameters, and choosing a reputable manufacturer can help ensure a longer lifespan for the screw compressor.

air compressor

How Do You Maintain the Air Quality in a Screw Compressor System?

Maintaining air quality in a screw compressor system is crucial to ensure the performance, efficiency, and reliability of the compressed air. Here’s a detailed explanation:

1. Proper Intake Filtration:

Install high-quality intake filters to prevent contaminants, such as dust, dirt, and debris, from entering the screw compressor system. These filters should have an appropriate filtration rating to effectively capture particles of the desired size. Regularly inspect and clean or replace the intake filters to maintain their effectiveness.

2. Compressed Air Dryers:

Use compressed air dryers, such as refrigerated dryers or desiccant dryers, to remove moisture from the compressed air. Moisture can lead to corrosion, damage to pneumatic equipment, and compromised air quality. The type of dryer selected depends on the specific application requirements and the desired level of moisture removal.

3. Oil Removal Filters:

In oil-injected screw compressors, oil is used for lubrication, which can contaminate the compressed air. Install oil removal filters downstream of the compressor to remove any oil carryover from the compressed air. These filters typically use coalescing technology to separate and trap oil particles, ensuring clean air quality.

4. Condensate Management:

Effectively manage condensate, which is formed when moisture in the compressed air condenses as it cools. Install condensate drains and separators to remove and properly dispose of condensate. Improper condensate management can lead to water contamination in the compressed air system.

5. Regular Maintenance:

Perform regular maintenance tasks as recommended by the manufacturer, including oil changes, filter replacements, and inspections. Proper maintenance helps ensure that the compressor system operates efficiently and minimizes the risk of contaminants entering the compressed air.

6. Air Receiver Tank Maintenance:

If the screw compressor system includes an air receiver tank, regularly inspect and clean the tank to remove any accumulated debris or contaminants. Additionally, ensure that the tank’s drain valve is functioning correctly to remove any water or condensate from the tank.

7. Leak Detection and Repair:

Regularly inspect the compressed air system for leaks. Leaks not only waste energy but also allow contaminants from the surrounding environment to enter the system. Use appropriate leak detection methods, such as ultrasonic detectors or soapy water solutions, to identify and promptly repair any leaks.

8. Monitor and Control Operating Conditions:

Monitor and maintain proper operating conditions within the screw compressor system. This includes monitoring discharge pressure, temperature, and other relevant parameters to ensure they are within acceptable ranges. Implement appropriate control strategies, such as regulating compressor capacity or adjusting dryer settings, to optimize air quality while meeting the specific application requirements.

9. Training and Awareness:

Provide training to operators and maintenance personnel on the importance of air quality in a screw compressor system. Ensure they understand proper maintenance procedures, the significance of filtration, and how to identify and address potential air quality issues.

10. Compliance with Regulations:

Be aware of and comply with relevant regulations and standards governing air quality in your specific industry or application. This may include adherence to guidelines such as ISO 8573, which specifies air purity classes for different contaminants in compressed air systems.

By following these practices, you can maintain the air quality in a screw compressor system, ensuring clean, reliable, and high-quality compressed air for various applications.

air compressor

How Does a Screw Compressor Work?

A screw compressor operates based on a unique rotary positive displacement principle. Here’s a detailed explanation:

Working Principle:

A screw compressor consists of two helical rotors, typically referred to as male and female rotors, that rotate in opposite directions within a housing. The rotors have specially designed profiles that interlock with each other, creating a series of compression chambers as they rotate. The compression chambers gradually reduce in volume as the rotors rotate, compressing the air or gas trapped inside.

Suction Process:

The suction process begins when the rotors start rotating. As they rotate, the helical lobes or threads on the rotors create expanding spaces between them. The expanding spaces draw in the air or gas from the inlet port, allowing it to enter the compression chamber. The suction process continues as the rotors rotate, and the expanding spaces move the air or gas towards the discharge side of the compressor.

Compression Process:

As the air or gas enters the compression chamber, it gets trapped between the interlocking lobes or threads of the rotors. As the rotors continue to rotate, the trapped air or gas is carried along the length of the rotors. The volume of the compression chamber gradually decreases as the lobes or threads of the rotors intermesh, compressing the air or gas. The compression process is continuous and smooth as the air or gas moves from the suction side to the discharge side of the compressor.

Discharge Process:

Once the air or gas reaches the discharge end of the compression chamber, it is pushed towards the outlet port. The compressed air or gas is then released from the compressor through the outlet port to be used for various applications.

Oil-Injected and Oil-Free Variants:

Screw compressors are available in both oil-injected and oil-free variants. In oil-injected screw compressors, a small amount of lubricating oil is injected into the compression chamber. The oil provides lubrication, cooling, and sealing between the rotors, reducing friction and minimizing wear. The oil-injected variant is commonly used in industrial applications where a small amount of oil in the compressed air is acceptable.

Oil-free screw compressors, on the other hand, are designed to operate without the need for oil lubrication. These compressors use specialized rotor coatings, such as PTFE (polytetrafluoroethylene) or other non-stick materials, to reduce friction and eliminate the need for oil. Oil-free screw compressors are preferred in applications that require oil-free and contaminant-free compressed air, such as in the food and beverage, pharmaceutical, and electronics industries.

In summary, a screw compressor works by utilizing interlocking helical rotors to compress air or gas. The rotating rotors draw in the air or gas during the suction process, and as they rotate, the trapped air or gas is compressed within the compression chamber. The compressed air or gas is then discharged from the compressor. Screw compressors are available in oil-injected and oil-free variants, catering to different application requirements.

China Best Sales 125HP Oil Free Screw Air Compressor (SCR125G) Dry Oil Free Ghh Oil-Free Ariend Ultracoat TM Super Coating   with Good qualityChina Best Sales 125HP Oil Free Screw Air Compressor (SCR125G) Dry Oil Free Ghh Oil-Free Ariend Ultracoat TM Super Coating   with Good quality
editor by CX 2024-04-10

China Hot selling Quality Guaranteed 0.55kw Oil Free Pressure Air Compressor manufacturer

Product Description

Q: Are you a manufacture or a trading company? A: We are both a manufacture and a trading company. We have two own factories, one is producing air compressors and the other is producing welding & cutting machines.
Q: what is the package for your products?
A: We have 4 standard packages for most of our items:  Package A: each set per color box, Package B: each set per brown box, Package C: each set per Honeycomb box, Package D: each set per wooden box.
Q: Do you also sell the replacements for your machines?
A: Yes, the replacements for our machines are available. Our replacement with a certain warranty, for some quick-weak part, we can supply some for free. For example, order quantity 1000pcs, we can give 1 to 50 pcs quick-weak replacements.
Q: What’s your payment term? A: The general payment term we are working with is T/T, 30% deposit, and 70% balance before shipment. But other payment terms such as L/C at sight are negotiable.
Q: How about the shipping cost? A: For small quantity order, the goods could be delivered to you via express courier, such as DHL, FEDEX and so on, we have a long-term cooperation with them. If the order quantity is large, the goods would be shipped by sea. We’ll advise the way of shipping and quote the shipping cost for your checking in advance, you also can ship by your shipping agent. /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Suport
Warranty: 1 Year
Lubrication Style: Oil-free
Cooling System: Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Vertical
Samples:
US$ 58/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What Is the Fuel Efficiency of Gas Air Compressors?

The fuel efficiency of gas air compressors can vary depending on several factors, including the compressor’s design, engine size, load capacity, and usage patterns. Gas air compressors typically use internal combustion engines powered by gasoline or propane to generate the mechanical energy required for compressing air. Here’s a detailed explanation of the factors that can influence the fuel efficiency of gas air compressors:

1. Engine Design and Size:

The design and size of the engine in a gas air compressor can impact its fuel efficiency. Engines with advanced technologies such as fuel injection and electronic controls tend to offer better fuel efficiency compared to older carbureted engines. Additionally, larger engines may consume more fuel to produce the required power, resulting in lower fuel efficiency compared to smaller engines for the same workload.

2. Load Capacity and Usage Patterns:

The load capacity and usage patterns of the gas air compressor play a significant role in fuel efficiency. Compressors operating at or near their maximum load capacity for extended periods may consume more fuel compared to compressors operating at lower loads. Additionally, compressors used intermittently or for lighter tasks may have better fuel efficiency due to reduced demand on the engine.

3. Maintenance and Tuning:

Proper maintenance and tuning of the gas air compressor’s engine can improve fuel efficiency. Regular maintenance tasks such as oil changes, air filter cleaning/replacement, spark plug inspection, and tuning the engine to the manufacturer’s specifications can help ensure optimal engine performance and fuel efficiency.

4. Operating Conditions:

The operating conditions, including ambient temperature, altitude, and humidity, can affect the fuel efficiency of gas air compressors. Extreme temperatures or high altitudes may require the engine to work harder, resulting in increased fuel consumption. Additionally, operating in humid conditions can affect the combustion process and potentially impact fuel efficiency.

5. Fuel Type:

The type of fuel used in the gas air compressor can influence its fuel efficiency. Gasoline and propane are common fuel choices for gas air compressors. The energy content and combustion characteristics of each fuel can affect the amount of fuel consumed per unit of work done. It is important to consider the specific fuel requirements and recommendations of the compressor manufacturer for optimal fuel efficiency.

6. Operator Skills and Practices:

The skills and practices of the operator can also impact fuel efficiency. Proper operation techniques, such as avoiding excessive idling, maintaining consistent engine speeds, and minimizing unnecessary load cycles, can contribute to improved fuel efficiency.

It is important to note that specific fuel efficiency ratings for gas air compressors can vary widely depending on the aforementioned factors. Manufacturers may provide estimated fuel consumption rates or fuel efficiency data for their specific compressor models, which can serve as a reference point when comparing different models or making purchasing decisions.

Ultimately, to maximize fuel efficiency, it is recommended to select a gas air compressor that suits the intended application, perform regular maintenance, follow the manufacturer’s guidelines, and operate the compressor efficiently based on the workload and conditions.

air compressor

Can Gas Air Compressors Be Used for Sandblasting?

Yes, gas air compressors can be used for sandblasting. Sandblasting is a process that involves propelling abrasive materials, such as sand or grit, at high speeds to clean, etch, or prepare surfaces. Here’s a detailed explanation:

1. Compressed Air Requirement:

Sandblasting requires a reliable source of compressed air to propel the abrasive material. Gas air compressors, particularly those powered by gasoline or diesel engines, can provide the necessary compressed air for sandblasting operations. The compressors supply a continuous flow of compressed air at the required pressure to propel the abrasive material through the sandblasting equipment.

2. Portable and Versatile:

Gas air compressors are often portable and can be easily transported to different job sites, making them suitable for sandblasting applications in various locations. The portability of gas air compressors allows flexibility and convenience, especially when sandblasting needs to be performed on large structures, such as buildings, tanks, or bridges.

3. Pressure and Volume:

When selecting a gas air compressor for sandblasting, it is essential to consider the required pressure and volume of compressed air. Sandblasting typically requires higher pressures to effectively propel the abrasive material and achieve the desired surface treatment. Gas air compressors can provide higher pressure outputs compared to electric compressors, making them well-suited for sandblasting applications.

4. Compressor Size and Capacity:

The size and capacity of the gas air compressor should be chosen based on the specific requirements of the sandblasting project. Factors to consider include the size of the sandblasting equipment, the length of the air hose, and the desired duration of continuous operation. Selecting a gas air compressor with an appropriate tank size and airflow capacity ensures a consistent supply of compressed air during sandblasting.

5. Maintenance Considerations:

Regular maintenance is crucial for gas air compressors used in sandblasting applications. The abrasive nature of the sand or grit used in sandblasting can introduce particles into the compressor system, potentially causing wear or clogging. Regular inspection, cleaning, and maintenance of the compressor, including filters, valves, and hoses, help prevent damage and ensure optimal performance.

6. Safety Precautions:

When using gas air compressors for sandblasting, it is essential to follow appropriate safety precautions. Sandblasting generates airborne particles and dust, which can be hazardous if inhaled. Ensure proper ventilation, wear appropriate personal protective equipment (PPE), such as respiratory masks, goggles, and protective clothing, and follow recommended safety guidelines to protect the operator and others in the vicinity.

In summary, gas air compressors can be effectively used for sandblasting applications. They provide the necessary compressed air to propel abrasive materials, offer portability and versatility, and can deliver the required pressure and volume for efficient sandblasting operations. Proper compressor selection, maintenance, and adherence to safety precautions contribute to successful and safe sandblasting processes.

air compressor

What Safety Precautions Should Be Taken When Operating Gas Air Compressors?

Operating gas air compressors safely is essential to prevent accidents, injuries, and equipment damage. It’s important to follow proper safety precautions to ensure a safe working environment. Here’s a detailed explanation of the safety precautions that should be taken when operating gas air compressors:

1. Read and Follow the Manufacturer’s Instructions:

Before operating a gas air compressor, carefully read and understand the manufacturer’s instructions, user manual, and safety guidelines. Follow the recommended procedures, maintenance schedules, and any specific instructions provided by the manufacturer.

2. Provide Adequate Ventilation:

Gas air compressors generate exhaust fumes and heat during operation. Ensure that the operating area is well-ventilated to prevent the accumulation of exhaust gases, which can be harmful or even fatal in high concentrations. If operating indoors, use ventilation systems or open windows and doors to allow fresh air circulation.

3. Wear Personal Protective Equipment (PPE):

Wear appropriate personal protective equipment (PPE) when operating a gas air compressor. This may include safety glasses, hearing protection, gloves, and sturdy footwear. PPE helps protect against potential hazards such as flying debris, noise exposure, and hand injuries.

4. Perform Regular Maintenance:

Maintain the gas air compressor according to the manufacturer’s recommendations. Regularly inspect the compressor for any signs of wear, damage, or leaks. Keep the compressor clean and free from debris. Replace worn-out parts and components as needed to ensure safe and efficient operation.

5. Preventive Measures for Fuel Handling:

If the gas air compressor is powered by fuels such as gasoline, diesel, or propane, take appropriate precautions for fuel handling:

  • Store fuel in approved containers and in well-ventilated areas away from ignition sources.
  • Refuel the compressor in a well-ventilated outdoor area, following proper refueling procedures and avoiding spills.
  • Handle fuel with caution, ensuring that there are no fuel leaks or spills near the compressor.
  • Never smoke or use open flames near the compressor or fuel storage areas.

6. Use Proper Electrical Connections:

If the gas air compressor requires electrical power, follow these electrical safety precautions:

  • Ensure that the electrical connections and wiring are properly grounded and in compliance with local electrical codes.
  • Avoid using extension cords unless recommended by the manufacturer.
  • Inspect electrical cords and plugs for damage before use.
  • Do not overload electrical circuits or use improper voltage sources.

7. Secure the Compressor:

Ensure that the gas air compressor is securely positioned and stable during operation. Use appropriate mounting or anchoring methods, especially for portable compressors. This helps prevent tipping, vibrations, and movement that could lead to accidents or injuries.

8. Familiarize Yourself with Emergency Procedures:

Be familiar with emergency procedures and know how to shut off the compressor quickly in case of an emergency or malfunction. Have fire extinguishers readily available and know how to use them effectively. Develop an emergency action plan and communicate it to all personnel working with or around the compressor.

It’s crucial to prioritize safety when operating gas air compressors. By following these safety precautions and using common sense, you can minimize the risks associated with compressor operation and create a safer work environment for yourself and others.

China Hot selling Quality Guaranteed 0.55kw Oil Free Pressure Air Compressor   manufacturer China Hot selling Quality Guaranteed 0.55kw Oil Free Pressure Air Compressor   manufacturer
editor by CX 2024-04-08

China factory 2021 New Design Energy Save AC Power Oil Injected 90kw 0.7MPa Screw Air Compressor for Painting air compressor lowes

Product Description

2571 New Design Energy Save Ac Power Oil Injected 90kw 0.7mpa Screw Air Compressor for Painting

Before quotation:
1.Before quoting, what should users offer?
1).Discharge pressure (Bar, Mpa or Psi)
2).Air discharge/Air flow/Air capacity (m3/min or CFM)
3).Power supply (220/380V, 50/60Hz, 3Phase)

2.If I don’t know the pressure and air flow, what should I do?
1).Take the picture of nameplate, we will advise the suitable air compressor to you.
2).Tell us what industry you are, we can advise the suitable 1 (so as to air tank / air dryer / air filters).
 
High Efficiency PM Motor and Energy Saving
*With the high-performance permanent magnet material, PM motor won’t lose magnetism even under 120°c and can run for more than 15 years.
*No motor bearing: permanent magnet rotors is installed directly on the stretch out shaft of Male rotor. This structure doesn’t have the bearing and eliminates the motor bearing fault. 
*Comparing to normal variable speed motor, the permanent magnet synchronous motor performs with even better energy efficiency. Especially in the low-speed condition, it can still maintain a high motor efficiency.

SHIPPING
Delivery: time 5-25 working days after payment receipt confirmed(based on actual quantity)
packing:standard export packing. or customized packing as your
Professional: goods shipping forwarder.

FAQ
Q: OEM/ODM, or customers logo printed is available?
Yes, OEM/ODM, customers logo is welcomed.

Q:  Delivery date?
Usually 5-25 workdays after receiving deposit, specific delivery date based on order quantity

Q: what’s your payment terms?
Regularly doing 30% deposit and 70% balance by T/T, Western Union, Paypal, other payment terms also can be discussed based on our cooperation.

Q: How to control your quality?
We have professional QC team, control the quality during the mass production and inspect completely goods before shipping.

Q:  If we don’t have shipping forwarder in China, would you do this for us?
We can offer you best shipping line to ensure you can get the goods timely at best price.

Q: come to China before, can you be my guide in China?
We are happy to provide you orservice, such as booking ticket, pick up at the airport, booking hotel, accompany visiting market or factory

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Video Technical Support
Warranty: 1 Year
Lubrication Style: Oil-less
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Horizontal
Customization:
Available

|

air compressor

How Does Variable Speed Control Work in Screw Compressors?

Variable speed control in screw compressors is a technology that allows the compressor’s rotational speed to be adjusted according to the compressed air or gas demand. This control method offers several benefits in terms of energy efficiency and system performance. Here’s a detailed explanation:

Variable speed control, also known as variable frequency drive (VFD) or inverter control, works by adjusting the speed of the compressor’s drive motor. The drive motor is typically an electric motor that powers the rotation of the compressor’s screw rotors.

The key components and operation of variable speed control in screw compressors are as follows:

  • 1. Drive Motor: The drive motor is connected to the compressor’s screw rotors and provides the rotational power required for compression. It is an electric motor capable of operating at variable speeds.
  • 2. Inverter or Variable Frequency Drive (VFD): The inverter or VFD is an electronic device that controls the speed of the drive motor. It converts the incoming electrical power into adjustable frequency and voltage, allowing precise control of the motor’s rotational speed.
  • 3. Control System: The control system of the screw compressor monitors and adjusts the speed of the drive motor based on the compressed air or gas demand. It receives input signals from sensors that measure parameters such as pressure, flow rate, or system demand, and sends corresponding signals to the inverter or VFD to regulate the motor speed.
  • 4. Speed Adjustment: When the demand for compressed air or gas decreases, the control system reduces the motor speed by decreasing the frequency and voltage supplied by the inverter or VFD. This results in a lower rotational speed of the screw rotors, reducing the compression capacity and power consumption of the compressor.
  • 5. Energy Efficiency: Variable speed control allows the compressor to match the output to the actual demand, avoiding energy wastage associated with constant-speed compressors. By operating at lower speeds during periods of lower demand, energy consumption can be significantly reduced. This energy-saving capability is particularly advantageous in applications with varying air or gas requirements.
  • 6. Smooth Operation: Variable speed control enables smooth and gradual motor acceleration and deceleration, minimizing mechanical stress on the compressor components and reducing the likelihood of sudden pressure surges or system shutdowns.
  • 7. System Stability: By adjusting the compressor’s speed to match the demand, variable speed control helps maintain stable system pressure and prevents excessive cycling of the compressor. This contributes to improved system performance and longevity.

It’s worth noting that variable speed control is more commonly found in larger screw compressors used in industrial and commercial applications. Smaller screw compressors may utilize fixed-speed motors due to cost considerations or simpler system requirements.

Overall, variable speed control in screw compressors offers precise capacity modulation, improved energy efficiency, enhanced system stability, and reduced maintenance requirements, making it a preferred choice in many applications where compressed air or gas demand fluctuates.

air compressor

Can Screw Compressors Be Used for Refrigeration?

Yes, screw compressors can be used for refrigeration applications. Here’s a detailed explanation:

Screw compressors are versatile and widely used in various industrial applications, including refrigeration. They are known for their efficiency, reliability, and ability to handle high-capacity refrigeration systems. Screw compressors work by compressing refrigerant gas, increasing its pressure and temperature, and then transferring the heat to the surrounding environment.

Here are some key points regarding the use of screw compressors in refrigeration:

1. Industrial Refrigeration Systems:

Screw compressors are commonly employed in large-scale industrial refrigeration systems, such as those used in cold storage facilities, food processing plants, beverage production, and HVAC systems for commercial buildings. These systems require high cooling capacities and continuous operation, making screw compressors an ideal choice.

2. Positive Displacement Compressors:

Screw compressors belong to the category of positive displacement compressors. They use two interlocking helical rotors (screws) to trap and compress the refrigerant gas. This design ensures a continuous flow of refrigerant and allows for efficient compression over a wide range of operating conditions.

3. Oil-Injected and Oil-Free Types:

Screw compressors can be either oil-injected or oil-free. Oil-injected screw compressors use oil for lubrication and cooling, which helps reduce friction and extend the compressor’s lifespan. In contrast, oil-free screw compressors use specialized coatings and materials to eliminate the need for oil, making them suitable for applications where oil contamination is a concern, such as in the pharmaceutical or food industries.

4. Multi-Stage Compression:

In refrigeration applications, screw compressors are often used in multi-stage configurations to achieve higher pressure ratios and improve overall system efficiency. Multi-stage compression involves compressing the refrigerant gas in multiple stages, typically with intermediate cooling between each stage, to reduce the work required for compression and enhance system performance.

5. Variable Speed Control:

Screw compressors can be equipped with variable speed drives (VSD) that allow for precise control of the compressor’s rotational speed. VSD technology enables the compressor to adjust its capacity according to the refrigeration load, resulting in energy savings and improved system performance.

6. System Integration:

Screw compressors are often integrated into complex refrigeration systems, working in tandem with other components such as condensers, evaporators, expansion valves, and control systems. This integration ensures efficient heat transfer, proper refrigerant flow, and effective temperature control.

It’s important to note that the selection of a screw compressor for refrigeration applications should consider factors such as cooling capacity requirements, operating conditions, refrigerant type, system configuration, and specific industry regulations.

In summary, screw compressors are well-suited for refrigeration applications, especially in industrial settings. Their efficiency, reliability, and capacity make them a popular choice for large-scale refrigeration systems. Whether in cold storage facilities, food processing plants, or HVAC systems, screw compressors play a crucial role in maintaining optimal temperatures and preserving perishable goods.

air compressor

What Are the Maintenance Requirements for Screw Compressors?

Screw compressors require regular maintenance to ensure optimal performance, reliability, and longevity. Here’s a detailed overview of the maintenance requirements for screw compressors:

  • 1. Lubrication: Screw compressors rely on proper lubrication to reduce friction, minimize wear, and maintain efficient operation. Regular lubrication of the rotor bearings, seals, and other moving parts is essential. The type and frequency of lubrication may vary depending on the compressor’s design and manufacturer’s recommendations.
  • 2. Filter Replacement: Screw compressors have intake filters that prevent dust, debris, and contaminants from entering the compression chamber. These filters need to be inspected regularly and replaced or cleaned as necessary to ensure unrestricted airflow and prevent damage to the compressor components.
  • 3. Cooling System Maintenance: Screw compressors may have cooling systems, such as air or water coolers, to dissipate heat generated during compression. The cooling system should be inspected periodically, and any blockages or leaks should be addressed promptly to maintain optimal cooling efficiency.
  • 4. Inspection of Belts and Couplings: If the screw compressor is belt-driven or connected through couplings, regular inspection of belts, pulleys, and couplings is necessary. Worn or damaged belts should be replaced, and couplings should be checked for alignment and tightness to ensure smooth power transmission.
  • 5. Cleaning of Heat Exchangers: Heat exchangers in screw compressors, such as intercoolers and aftercoolers, can accumulate dirt, scale, and other deposits over time. Regular cleaning of these heat exchangers is important to maintain their heat transfer efficiency and prevent overheating of the compressed air or gas.
  • 6. Inspection of Seals and Gaskets: The seals and gaskets in a screw compressor play a critical role in maintaining proper compression and preventing air or gas leakage. Regular inspection of these components is necessary to detect any signs of wear, damage, or leakage. Faulty seals or gaskets should be replaced promptly to maintain the compressor’s efficiency.
  • 7. Regular Performance Testing: Periodic performance testing of screw compressors is recommended to assess their operating parameters, such as discharge pressure, flow rate, and power consumption. This helps identify any deviations from the expected performance and allows for adjustments or repairs as needed.

It’s important to note that the specific maintenance requirements for screw compressors may vary depending on the compressor’s design, manufacturer’s recommendations, operating conditions, and usage. Consulting the compressor’s manual and following the manufacturer’s guidelines is crucial for maintaining the compressor effectively and ensuring its reliable operation over time.

China factory 2021 New Design Energy Save AC Power Oil Injected 90kw 0.7MPa Screw Air Compressor for Painting   air compressor lowesChina factory 2021 New Design Energy Save AC Power Oil Injected 90kw 0.7MPa Screw Air Compressor for Painting   air compressor lowes
editor by CX 2024-04-04

China Good quality Industrial 24VDC A/C Inverter Refrigerator Oil Free Screw Air Dryer Compressor Machine with Cool Box air compressor parts

Product Description

The pics and information showing just for your reference,pls contact us for any items demanded!!
Not only air compressors are sold, but various parts can also be customized for sale.
We can arrange production according to ur part number,pics and drawing!

Product Description

Application fields

Products are now widely used in variable pressure oil, turbine oil, hydraulic oil, aviation kerosene, petroleum, chemical,
voltage, coal, mining, pharmaceutical, food, construction machinery and other industries

Product features
* Composite structure with high filtering accuracy
* Large amount of sewage, long service life
* Corrosion resistance, pressure resistance
* Increase in volume per unit area
* Filter element made of stainless steel woven mesh with uniform aperture, high strength and easy cleaning
* Alternative to similar competitive products abroad

Product Details
 

 

 

Company Profile

 

CHINAMFG CO., LTD.is a factory with more than 20 years of production experience. We specialize in the production, development and sales of filters, hydraulic filter elements, air compressor filters, oil filters, water filters, metal filters, oil filters and air compressor accessories, which can also be customized according to customer requirements. Customers are located in more than 100  countries such as Asia, Europe, North America, South America and Africa.

 

We participate in various domestic and foreign exhibitions and have exhibition halls in many countries, quality and price is competitive,and we can provide free sample,if you have any needs,please feel free to contact us.

Packaging and Shipping

Hydac models

0030D003BN/HC 0030D005BH/HC 0030D005BN3HC 0030D571W/HC
0060D003BN3HC 0060D005BH3HC 0060D571BN3HC 0060D571W/HC
0110D005BH/HC 0110D571BN/HC 0110D003BH/HC 0110D571BN3HC
5710D003BN/HC 5710D005BN3HC 5710D571BH3HC 5710D571W/HC
0140D003BN/HC 0140D005BN3HC 0140D571BH3HC 0140D571W/HC
0160D0003BN/HC 0160D0005BN3HC 0160D571BH3HC 0160D571W/HC
5710D003BN/HC 5710D005BN3HC 5710D571BH3HC 5710D571W/HC
0330D003BN/HC 0330D005BN3HC 0330D571BH3HC 0330D571W/HC
0480D003BN/HC 0480D005BN3HC 0480D571BH3HC 0480D571W/HC
0500D003BN/HC 0500D005BN3HC 0500D571BH3HC 0500D571W/HC
0571 D003BN/HC 0571 D005BN3HC 0571 D571BH3HC 0571 D571W/HC
571D003BN/HC 571D005BN3HC 571D571BH3HC 571D571W/HC
0030R003BN3HC 0030R005BN/HC 0030R571P 0030R571W
0060R003BN3HC 0060R005BN/HC 0060R571P 0060R571W
0110R003BH3HC 0110R005BN/HC 0110R571P 0110R571W
0160R003BN3HC 0160R005BN/HC 0160R571P 0160R571W
5710R003BN3HC 5710R005BN/HC 5710R571P 5710R571W
0330R003BN3HC 0330R005BN/HC 0330R571P 0330R571W
0571 R003BN3HC 0571 R571P 0571 R571W 0850R003BN3HC
0850R005BN/HC 0850R571P 0850R571W 0950R003BN3HC
0950R005BN/HC 0950R571P 0950R571W 1300R003BH3HC
1300R005BN/HC 1300R571P 1300R571W 2600R003BN3HC
2600R005BN/HC 2600R571BN3HC 2600R571W 2600R571BN3HC

models:

HC9600FKN16H

HC9601FDP8Z

HC8900FKT26H

HC9700FKP18H

HC8314FKP16Z

HC2237FDT6H

HC5713SEE5

HC4704FKN13H

HC4754FKN8H

HC4754FKZ16H

HC4754FMS13H

HC5711FDP18Z

HC5711FDT18H

HC2207FDP3H

HC2217FKP4Z

HC2233FDN6H

HC2237FDN6H

HC2295FDN6H

HC2544FKN19H

HC6200FKP8H

HC6400FKN8H

HC6500FKN16H

HC7400FKP4H

HC7500FKP4H

HC8200FKP8H

HC8300FKP39H

HC8304FKP16H

HC8310FKP16H

HC8314FKP16H

HC8400FKP8H

HC8400FKP39H

HC8500FKP8H

HC8500FKP26H

HC8700FKP8H

HC8800FKP

HC8900FKP13H

HC8900FKP26H

HC8904FKP13H

HC9650FKP16H

HC9651FKP8H

HC9571FKP4H

HC9571FKP4H

HC9100FKP8H

HC9104FKP13H

HC9300FKP8H

HC9400FKP13H

HC9400FKP39H

HC9401FKP8H

HC9600FKP8H

HC9604FKP16H

HC9700FKP8H

HC9801FKP4H

 

More ARGO filter models:

V257106

V257108

V2092006

V2092008

V2121736

V2126036

V3052003

V3052018

V3060708

V3062088

V3072016

V357158

V357108

V3082313

V3092308

V3094006

S7061300 

S7061315

S2 0571 10

S2072300

S2092571

S2092005

S2157108

S2111300 

S3050850

S3 0571 00

S3 0571 05

S3072005

S357100

S3101710

S3101715

S9062222      

More INTERNORMEN filter models:

01 .E450.25VG.30.E.P.VA

01 .E450.3VG.30.E.V 

01.E.170.3VG.HR.E.P

01.E.170.25VG.10.E.P

01.E.240.12VG.10.E.P

01.E.240.6VG.HR.E.P

01.E.360.3VG.HR.E.P

01.E.360.12VG.10.E.P

01.E.660.6VG.HR.E.P

01.E.660.25VG.10.E.P

01.E.900.3VG.HR.E.P

01.E.900.25VG.10.E.P

01.E.41.6VG.HR.E.P

01.E.41.25VG.10.E.P

01.E.70.3VG.HR.E.P

01.E.70.12VG.10.E.P

01.E.120.6VG.HR.E.P

01.E.120.25VG.10.E.P

01.E.210.3VG.HR.E.P

01.E.210.12VG.10.E.P

01.NL.40.3VG.HR.E.P

01.NL.40.25.30.E.P

01.NL.63.12VG.16.E.P

01.NL.63.6VG.HR.E.P

01.NL.250.3VG.HR.E.P  

01.NL.250.25VG.10.E.P

01.NL.400.3VG.HR.E.P

01.NL.400.12VG.16.E.P 

01.NL.630.12VG.16.E.P

 01.NL.630.25VG.10.E.P

01.NL.1000.3VG.HR.E.P

01.NL.1000.25VG.10.E.P

01.NR.40.3VG.HR.B.P

01.NR.40.25VG.10.B.P

01.NR.100.3VG.HR.B.P

01.NR.100.25VG.10.B.P

01.NR.160.6VG.HR.B.P

01.NR.160.25VG.10.B.P

01.NR.250.12VG.16.B.P

01.NR.250.6VG.HR.B.P 

01.NR.400.3VG.HR.B.P

01.NR.400.25VG.10.B.P

01.NR.1000.12VG.16.B.P

01.NR.1000.6VG.HR.B.P

                           The above models are only part of the company’s products. 

FAQ

1. How about your quality? 
&Our company go through ISO9001: 2015 quality management system certification. 
& The company has an on-site certification SGS that you can trust. 
&  Most products pass CE production certification. 

2. What’s the warranty? 
Our warranty is 1 year. It means in the correct installation and normal Instructions, If our goods have any quality problem, we will re-produce for you again for free. 

3. What is your delivery time? 
Usually 7-10 working days after payment. 

4. What is your packaging and shipment? 
&Carton inside, wooden outside or as your requirements
&By international express, air and sea
&Shipment port: ZheJiang or any other Chinese ports

5. What’s your service? 
&Answer all your questions about the products patiently and technical advisory for any time
&All filter element will be tested before shipment
&Provide you newest goods transport conditions until you receive our products

6.  What’s your sample policy? 
We do free sample wtih shipfee collected.

7. What’s the terms of payment? 
We usually do T/T 30% as deposit, and 70% before delivery

8 . Can I use my own logo on the products? 
A: Yes, customize logo on the products are available

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Service
Warranty: 2 Years
Lubrication Style: Lubricated
Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

How Do You Select the Right Size Screw Compressor for Your Needs?

Choosing the right size screw compressor is crucial to ensure optimal performance, energy efficiency, and cost-effectiveness for your specific compressed air or gas requirements. Here’s a detailed explanation of the selection process:

Selecting the right size screw compressor involves considering several key factors:

  • 1. Air or Gas Demand: Determine your compressed air or gas demand by assessing the total required flow rate (measured in cubic feet per minute or liters per second) and the operating pressure (measured in pounds per square inch or bar). This information helps establish the compressor’s capacity requirements.
  • 2. Duty Cycle: Evaluate your operation’s duty cycle, which refers to the percentage of time the compressor will be running. Duty cycles can vary from continuous operation to intermittent or seasonal usage. The duty cycle affects the compressor’s sizing, as it determines the required compressor output and influences the compressor’s cooling and maintenance needs.
  • 3. Ambient Conditions: Consider the environmental conditions in which the compressor will operate. Factors such as temperature, humidity, and altitude can impact the compressor’s performance and cooling requirements. Ensure that the selected compressor is suitable for the specific ambient conditions of your facility.
  • 4. System Pressure Requirements: Determine the minimum and maximum operating pressure requirements for your application. This information is essential in selecting a compressor that can consistently deliver the required pressure range throughout its operating range.
  • 5. Efficiency Considerations: Evaluate the energy efficiency of different compressor models. Look for compressors with high energy efficiency ratings, such as those certified by organizations like the Air Compressor and Gas Association (CAGI) or ENERGY STAR. Energy-efficient compressors can significantly reduce operating costs over the equipment’s lifespan.
  • 6. Future Expansion: Consider any anticipated growth or changes in your compressed air or gas demand. If you expect increased demand in the future, it’s advisable to select a compressor with some extra capacity to accommodate future expansion without requiring immediate replacement.
  • 7. Maintenance and Serviceability: Assess the maintenance requirements and serviceability of different compressor models. Look for features that make routine maintenance tasks, such as filter changes or oil checks, easily accessible and convenient. Consider the availability of service technicians and spare parts for the chosen compressor brand or model.
  • 8. Manufacturer and Supplier Support: Research the reputation and track record of compressor manufacturers and suppliers. Choose established brands known for producing reliable, high-quality equipment. Consider factors such as warranty coverage, technical support availability, and the proximity of service centers.

Once you have gathered the necessary information and considered the factors mentioned above, you can consult with compressor manufacturers or suppliers who can provide expert advice and assist in selecting the right size screw compressor for your specific needs. They can perform detailed calculations, taking into account the factors discussed, to recommend a compressor that matches your requirements and provides optimal performance.

It’s important to note that selecting the right size screw compressor is a critical decision, and professional guidance is highly recommended to ensure an accurate assessment and proper matching of the compressor to your specific needs.

In summary, selecting the right size screw compressor involves assessing your compressed air or gas demand, duty cycle, ambient conditions, pressure requirements, efficiency considerations, future expansion plans, maintenance requirements, and manufacturer support. By considering these factors and seeking expert advice, you can choose a screw compressor that meets your needs and delivers reliable, efficient performance.

air compressor

What Is the Impact of Ambient Temperature on Screw Compressor Performance?

Ambient temperature has a significant impact on the performance of screw compressors. Here’s a detailed explanation:

Screw compressors, like other types of compressors, rely on the surrounding environment to dissipate heat and maintain optimal operating conditions. The ambient temperature directly affects the compressor’s efficiency, capacity, power consumption, and overall performance.

Here are the key ways in which ambient temperature influences screw compressor performance:

1. Cooling Efficiency:

The cooling efficiency of a screw compressor is affected by the temperature difference between the compressed gas and the ambient air. As the ambient temperature increases, the temperature difference decreases, making it more challenging to transfer heat effectively. This can lead to higher discharge temperatures and reduced cooling efficiency, potentially impacting the compressor’s overall capacity and performance.

2. Capacity and Power Consumption:

Higher ambient temperatures can decrease the capacity of a screw compressor. Compressors are typically designed and rated based on specific operating conditions, including a defined ambient temperature range. When the ambient temperature exceeds the design limits, the compressor may experience reduced volumetric efficiency, resulting in a decrease in its overall capacity. Additionally, the compressor may require more power to maintain the desired pressure levels, leading to increased power consumption.

3. Heat Recovery:

In some applications, screw compressors are equipped with heat recovery systems to utilize the waste heat generated during compression. The effectiveness of heat recovery is influenced by the ambient temperature. Higher ambient temperatures can reduce the temperature differential available for heat exchange, limiting the potential for heat recovery and decreasing the overall system efficiency.

4. Lubrication and Cooling:

Screw compressors rely on lubrication systems to reduce friction and prevent wear between moving parts. The ambient temperature affects the performance of the lubricant. In high ambient temperatures, the lubricant may experience decreased viscosity, potentially leading to inadequate lubrication and increased wear on compressor components. Similarly, the cooling system of the compressor, including fans and heat exchangers, may be less effective in higher ambient temperatures, impacting the compressor’s ability to dissipate heat.

5. Operating Envelope:

Screw compressors have specified operating envelopes, which define the acceptable range of operating conditions, including ambient temperature. Operating the compressor outside its designed ambient temperature range can result in reduced reliability, increased maintenance requirements, and potential system failures. It is crucial to adhere to the manufacturer’s guidelines and ensure that the compressor operates within the recommended ambient temperature limits.

6. Control and Protection:

Modern screw compressors often feature advanced control and protection systems that monitor various parameters, including ambient temperature. These systems may adjust compressor operation, such as modulation of capacity or cooling strategies, to optimize performance and protect the compressor from operating outside safe limits. Understanding the impact of ambient temperature allows for appropriate adjustments and settings to maintain reliable and efficient compressor operation.

It’s important to note that different compressor models and manufacturers may have specific performance characteristics and operating limits. Therefore, consulting the manufacturer’s documentation and guidelines for the particular screw compressor in use is essential.

In summary, ambient temperature significantly affects the performance of screw compressors. Higher ambient temperatures can reduce cooling efficiency, decrease compressor capacity, increase power consumption, and impact lubrication and cooling systems. Adhering to recommended operating conditions and considering ambient temperature limitations are crucial for ensuring optimal performance, reliability, and longevity of screw compressors.

air compressor

What Is a Screw Compressor?

A screw compressor is a type of positive displacement compressor that operates based on the principle of rotary motion. Here’s a detailed explanation:

Working Principle:

A screw compressor consists of two helical rotors, typically called male and female rotors, that rotate in opposite directions within a housing. The rotors have specially designed profiles that interlock with each other, creating a series of compression chambers as they rotate. As the rotors rotate, the volume of these chambers decreases, compressing the air or gas trapped inside.

Compression Process:

As the air or gas enters the screw compressor, it gets trapped between the rotors’ lobes or threads. As the rotors continue to rotate, the trapped air or gas is carried along the length of the rotors and gradually compressed. The compression occurs continuously and smoothly as the air or gas moves from the suction side to the discharge side of the compressor. The interlocking rotors ensure a continuous flow of compressed air or gas without pulsation.

Oil-Injected and Oil-Free Variants:

Screw compressors are available in both oil-injected and oil-free variants. In oil-injected screw compressors, a small amount of lubricating oil is injected into the compression chamber to provide lubrication, cooling, and sealing between the rotors. The oil also helps in reducing friction and minimizing wear. Oil-injected screw compressors are commonly used in various industrial applications where a small amount of oil in the compressed air is acceptable.

On the other hand, oil-free screw compressors are designed to operate without the need for oil lubrication. These compressors use specialized rotor coatings, such as PTFE (polytetrafluoroethylene) or other non-stick materials, to reduce friction and prevent the need for oil. Oil-free screw compressors are often favored in applications where oil-free and contaminant-free compressed air is essential, such as in food and beverage, pharmaceutical, and electronics industries.

Applications:

Screw compressors are widely used in various industries for a range of applications. They are commonly employed in manufacturing plants, refineries, power generation facilities, and other industrial settings to supply compressed air or gas for pneumatic tools, process equipment, air conditioning systems, and more. The ability of screw compressors to deliver a continuous flow of compressed air or gas makes them suitable for applications that require a steady and reliable source of compressed air.

Advantages:

Screw compressors offer several advantages compared to other types of compressors. They provide high efficiency and can deliver a large volume of compressed air or gas. The continuous compression process results in smooth operation with minimal pulsation. Additionally, screw compressors are known for their compact design, low vibration levels, and relatively quiet operation.

In summary, a screw compressor is a rotary positive displacement compressor that uses interlocking helical rotors to compress air or gas. It operates based on a continuous compression process and is available in both oil-injected and oil-free variants. Screw compressors find widespread use in various industries for applications that require a reliable source of compressed air or gas.

China Good quality Industrial 24VDC A/C Inverter Refrigerator Oil Free Screw Air Dryer Compressor Machine with Cool Box   air compressor partsChina Good quality Industrial 24VDC A/C Inverter Refrigerator Oil Free Screw Air Dryer Compressor Machine with Cool Box   air compressor parts
editor by CX 2024-04-03

China OEM Electric Silent Oil Free Screw Type 45kw Air Compressor with CHINAMFG for Industrial air compressor for sale

Product Description

Electric silent oil free screw type  45kw air compressor with CHINAMFG for Industrial

 

Product Description

Product features:
  LG-12/2 screw air compressor is mainly used in material conveying, textile industry and other low-pressure gas sector industries, compared with the traditional piston type, pendulum type and other air compressors, with a long continuous operation time, no human care, stable operation, high reliability, low failure rate, low noise advantages, in actual use will bring users a very high economic and environmental benefits.
 
 1, the overall design of air compressor:
LG-12/2 screw air compressor is composed of the bottom frame, which is reasonably arranged and installed: distribution box, motor, screw machine head, hot oil pump, oil cooler, oil and gas separator, protective silencer housing and other components (can be selected according to customers).
2. Control system:
The control system adopts HangZhou MAM880 screw air compressor microcomputer controller, and the main motor is started by star triangle. The whole control system is equipped with temperature sensor, pressure sensor, air intake valve, minimum pressure valve, safety valve, check valve, etc., to achieve the optimal accessories, reasonable configuration, automatic control, smooth operation, safe and reliable.
The main advantage of this type of screw air compressor is that in order to ensure the safe and reliable operation of the screw machine, the design selects the most reliable hot oil pump in China, so that the screw machine can ensure the normal circulation of the system cooling oil at any time!

 

Detailed Photos

 

Product Parameters

Main specifications and technical parameters
(1) Exhaust pressure: 0.2MPa;
(2) Exhaust volume: 12m³/min;
(3) Main motor power: 45kw;
(4) Screw model number: CHINAMFG brand
(5) Work nature: continuous work;
(6) Noise: ≤85dB(A);
(7) Overall size: 2030*1060*1420mm;
(8) Machine weight: 700 kg.

 

 

Company Profile

   Rongheng times (ZheJiang ) International Trade Services Co. , Ltd. is mainly engaged in the Air compressor and special purpose vehicles.
    Air compressor including oil-free lubrication pendulum air compressor and screw air compressor 2 series of more than 20 kinds of products. As a manufacturer of Compressed air systems, the company has always advocated for customized Compressed air solutions and long-term quality services for specific industry applications.
    The leading products of special vehicles are tank-type special vehicles, which include fluid material transport equipment such as concrete mixer, powder material transport vehicles, liquid transport vehicles, and special equipment for sanitation and animal husbandry, at present, the annual production capacity of more than 10,000 units.

Our Advantages

 The products cover 31 provinces, cities and autonomous regions, and export to more than 50 countries and regions.
    Get Quality Products to you faster and better.
 

FAQ

Q1. Do you test all your goods before delivery?
A1: Yes, we have 100% test before delivery
Q2. What is your terms of delivery?
A2: EXW, FOB, CFR, CIF, DDU…As for the payment terms,it depends on the total amount.
Q3. What is the average delivery time?
A3: Usually takes about 10-20 days . The specific delivery time depends on the items and the quantity of your order.
Q4. What is the Payment term?
A4: By T/T before shipment or By L/C at sight.
Q5. During shipping, if there is a damage to products, how do you get replacement?
A5:Firstly, we should investigate the reason cause the damage. At the same time, we will claim for the insurance by ourselves or assist the buyer. Secondly we will send the replacement to the buyer. The responsible person for above damage will take charge of the cost of the replacement.
 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: on-Line 7*24h
Warranty: 12 Months
Lubrication Style: Oil-free
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Horizontal
Customization:
Available

|

air compressor

What Is the Noise Level of Screw Compressors?

The noise level of screw compressors can vary depending on several factors, including the compressor’s size, design, operating conditions, and the presence of noise-reducing features. Here’s a detailed explanation:

Screw compressors are known for their relatively low noise levels compared to other types of compressors, such as reciprocating compressors. However, the actual noise level can still vary depending on the specific compressor model and its operating parameters.

The noise level of screw compressors is typically measured in decibels (dB) and can range from around 60 dB to 90 dB or higher. It’s important to note that the noise level is logarithmic, meaning that a small increase in decibel level represents a significant increase in perceived noise intensity.

Several factors can influence the noise level of screw compressors:

  • 1. Compressor Size and Design: Larger screw compressors tend to produce higher noise levels compared to smaller ones. This is because larger compressors generally have more powerful motors and larger rotating components, which can generate more noise. The design of the compressor, including the type of rotor profiles and the presence of noise-reducing features, can also impact the noise level.
  • 2. Operating Conditions: The operating conditions of the compressor, such as the speed of rotation and the discharge pressure, can affect the noise level. Higher speeds and pressures may result in increased noise production. Additionally, the presence of pulsations or vibrations in the system can contribute to noise generation.
  • 3. Sound Insulation and Enclosures: Some screw compressors come with built-in sound insulation or enclosures to reduce noise levels. These features help contain the noise within the compressor unit and minimize the propagation of noise to the surrounding environment. Compressors equipped with sound insulation or enclosures generally have lower noise levels compared to open-frame compressors.
  • 4. Installation and Surrounding Environment: The installation of the compressor and the characteristics of the surrounding environment can influence the perceived noise level. Factors such as the proximity of the compressor to sensitive areas, the presence of sound-absorbing materials, and the layout of the facility can impact the noise propagation and overall noise perception.
  • 5. Maintenance and Wear: Proper maintenance of the compressor, including regular inspection and lubrication of components, can help minimize noise levels. Wear and tear on the compressor’s internal parts can lead to increased noise production, so timely repairs or component replacements are important to maintain optimal performance and minimize noise.

It’s worth noting that noise levels are typically provided by manufacturers as specifications for each compressor model. These specifications can help users select compressors with noise levels that meet their specific requirements or comply with local noise regulations.

In summary, the noise level of screw compressors can range from around 60 dB to 90 dB or higher, depending on factors such as compressor size, design, operating conditions, and the presence of noise-reducing features. Proper installation, maintenance, and the use of sound insulation or enclosures can help minimize noise levels and create a more comfortable and quieter operating environment.

air compressor

How Do You Maintain the Air Quality in a Screw Compressor System?

Maintaining air quality in a screw compressor system is crucial to ensure the performance, efficiency, and reliability of the compressed air. Here’s a detailed explanation:

1. Proper Intake Filtration:

Install high-quality intake filters to prevent contaminants, such as dust, dirt, and debris, from entering the screw compressor system. These filters should have an appropriate filtration rating to effectively capture particles of the desired size. Regularly inspect and clean or replace the intake filters to maintain their effectiveness.

2. Compressed Air Dryers:

Use compressed air dryers, such as refrigerated dryers or desiccant dryers, to remove moisture from the compressed air. Moisture can lead to corrosion, damage to pneumatic equipment, and compromised air quality. The type of dryer selected depends on the specific application requirements and the desired level of moisture removal.

3. Oil Removal Filters:

In oil-injected screw compressors, oil is used for lubrication, which can contaminate the compressed air. Install oil removal filters downstream of the compressor to remove any oil carryover from the compressed air. These filters typically use coalescing technology to separate and trap oil particles, ensuring clean air quality.

4. Condensate Management:

Effectively manage condensate, which is formed when moisture in the compressed air condenses as it cools. Install condensate drains and separators to remove and properly dispose of condensate. Improper condensate management can lead to water contamination in the compressed air system.

5. Regular Maintenance:

Perform regular maintenance tasks as recommended by the manufacturer, including oil changes, filter replacements, and inspections. Proper maintenance helps ensure that the compressor system operates efficiently and minimizes the risk of contaminants entering the compressed air.

6. Air Receiver Tank Maintenance:

If the screw compressor system includes an air receiver tank, regularly inspect and clean the tank to remove any accumulated debris or contaminants. Additionally, ensure that the tank’s drain valve is functioning correctly to remove any water or condensate from the tank.

7. Leak Detection and Repair:

Regularly inspect the compressed air system for leaks. Leaks not only waste energy but also allow contaminants from the surrounding environment to enter the system. Use appropriate leak detection methods, such as ultrasonic detectors or soapy water solutions, to identify and promptly repair any leaks.

8. Monitor and Control Operating Conditions:

Monitor and maintain proper operating conditions within the screw compressor system. This includes monitoring discharge pressure, temperature, and other relevant parameters to ensure they are within acceptable ranges. Implement appropriate control strategies, such as regulating compressor capacity or adjusting dryer settings, to optimize air quality while meeting the specific application requirements.

9. Training and Awareness:

Provide training to operators and maintenance personnel on the importance of air quality in a screw compressor system. Ensure they understand proper maintenance procedures, the significance of filtration, and how to identify and address potential air quality issues.

10. Compliance with Regulations:

Be aware of and comply with relevant regulations and standards governing air quality in your specific industry or application. This may include adherence to guidelines such as ISO 8573, which specifies air purity classes for different contaminants in compressed air systems.

By following these practices, you can maintain the air quality in a screw compressor system, ensuring clean, reliable, and high-quality compressed air for various applications.

air compressor

Are There Different Types of Screw Compressors?

Yes, there are different types of screw compressors available, catering to various application requirements. Here’s an overview of the main types:

1. Oil-Injected Screw Compressors:

Oil-injected screw compressors, also known as lubricated screw compressors, are the most common type. These compressors require the injection of a small amount of lubricating oil into the compression chamber. The oil serves multiple purposes, including lubrication, cooling, sealing, and reducing friction between the rotors. Oil-injected screw compressors are widely used in industrial applications where a small amount of oil in the compressed air is acceptable.

2. Oil-Free Screw Compressors:

Oil-free screw compressors are designed to operate without the need for oil lubrication. These compressors incorporate specialized rotor coatings, such as PTFE (polytetrafluoroethylene) or other non-stick materials, to reduce friction and eliminate the need for oil. Oil-free screw compressors are preferred in applications that require oil-free and contaminant-free compressed air. Industries like food and beverage, pharmaceuticals, electronics, and others often rely on oil-free screw compressors to ensure the purity of the compressed air.

3. Variable Speed Drive (VSD) Screw Compressors:

VSD screw compressors, also known as variable frequency drive (VFD) screw compressors, are equipped with a variable speed drive system. This system allows the compressor to adjust the rotational speed of the motor and, consequently, the speed of the screw rotors. By varying the speed, VSD screw compressors can closely match the compressed air or gas demand, resulting in energy savings and improved efficiency. VSD screw compressors are particularly beneficial in applications with varying air demand, as they can adapt their output accordingly.

4. Two-Stage Screw Compressors:

Two-stage screw compressors consist of two sets of rotors arranged in series. The first stage compresses the air or gas to an intermediate pressure, and the second stage further compresses it to the desired final pressure. Two-stage screw compressors are commonly used in applications that require higher discharge pressures. By dividing the compression into two stages, these compressors can achieve higher efficiency and improved performance in high-pressure applications.

5. Water-Injected Screw Compressors:

Water-injected screw compressors, also known as liquid-injected screw compressors, utilize water or a water-glycol mixture as a sealing and cooling medium. The water injection helps in sealing the compression chamber and reduces the discharge temperature, enhancing the compressor’s efficiency. Water-injected screw compressors are often used in applications where oil contamination is a concern, such as in the pharmaceutical and food processing industries.

Each type of screw compressor has its own advantages and is suitable for specific applications. The choice of the screw compressor type depends on factors such as the desired level of air purity, the need for oil-free operation, energy efficiency requirements, and the operating conditions of the application.

China OEM Electric Silent Oil Free Screw Type 45kw Air Compressor with CHINAMFG for Industrial   air compressor for saleChina OEM Electric Silent Oil Free Screw Type 45kw Air Compressor with CHINAMFG for Industrial   air compressor for sale
editor by CX 2024-04-03

China manufacturer Best Quality High Pressure Oil Free Ammonia Hydrogen Natural Gas Piston Compressor Reciprocating Compressor Price with Hot selling

Product Description

Detailed Photos

Best Quality High Pressure Oil Free Ammonia Hydrogen Natural
Gas Piston Compressor Reciprocating Compressor Price

Description&Advantages

Product Descriptions:
Mainly used for boosting and transporting natural gas into the pipeline network (natural gas extraction from pipelines, recovery and cHangZhou of combustible gases). It can also be used for stirring in the pharmaceutical and brewing industries, pressurized gas transportation in the chemical industry, blow molding for bottle production in the food industry, and dust removal from parts in machinery manufacturing

Advantages:
Our products, incorporating technology from Austria’s LMF and Germany’s CHINAMFG Demag companies, exhibit high reliability. Wearable parts like gas valves and piston rings use products from Austria’s Hoerbiger company, with a lifespan exceeding 8000 hours. The system supports soft starting, allowing frequent start and stop cycles for the compressor.  It features a wide intake range for broad adaptability. The overall skid-mounted structure results in low noise and is easy to install in urban areas, leading to investment savings.
It is equipped with a CHINAMFG PLC control system for high automation, ABB soft start (or variable frequency), and features automatic shutdown with audible and visual alarms in case of faults

Product Parameters

Model Flow
m3/h
Inlet Pressure
(Mpa)
Outlet Pressure (Mpa) Weight(Kg) Power(Kw)
VW-6/16-24 360 1.6 2.4 2600 110
VW-6/(0-1.62)-(5-21) 360 0-0.162 0.5-2.1 2350 75
WW-26.7/0.5-10 1602 0.05 1 4500 250
DW-2/0.2-16 120 0.02 1.6 1500 22
WW-3/8 180 normal pressure 0.8 1500 22
2VW-50/3.5 3000 normal pressure 0.35 6000 220
2VW-16.7/0.5-20 1002 0.05 2 6500 185
ZW-0.6/6-10 36 0.6 1 760 5.5
ZW-0.8/12 48 normal pressure 1.2 1200 7.5
DW-9.5/7 570 normal pressure 0.7 2600 55
VW-4.5/0.5-10 270 0.05 1 2100 37
2VW-25/25 1500 normal pressure 2.5 2100 250
2VW-50/3.5 3000 normal pressure 0.35 6000 220
DW-4.5/0.5-13 270 0.05 1.3 2500 18.5
ZW-0.46/(5-10)-(15-20) 27.6 0.5-1.0 1.5-2.0 850 11
VW-5.6/(1.5-2)-25 336 0.15-0.2 2.5 2000 55
V-6.5/(1-3)-7 390 0.1-0.3 0.7 1900 37
WW-2.5/3-250 150 0.3 25 3500 110

Our Factory

 

Part of Customer Visit

 

Certifications & Testing

 

Related Product

 

FAQ

Q:Are you a factory?

A:Yes, we are indeed a factory. We specialize in manufacturing high-quality Air/Gas Compressors and are proud to be a primary source for these products.

Q:How long is your delivery time?
A:It varies depending on the specific situation. For our standard configuration compressors, the delivery time is around 30 days. For customized compressors, it usually takes about 30-45 days.

Q:What technical support do you offer?
A:We offer comprehensive technical support to our clients, including remote assistance for installation and commissioning processes. Additionally, we have a team of seasoned engineers ready to be deployed to international client locations for meticulous on-site debugging, installation, and post-installation services.

Q:What is your warranty period?
A:Our warranty policy is valid for a period of 18 months from the date of commissioning at the end customer’s site or 21 months from the date of receipt by the purchaser, whichever comes first. This comprehensive coverage is designed to ensure total customer satisfaction and the reliability of our products

Q:How do you package the compressors?
A:For smaller compressors, we utilize robust plywood boxes that conform to export specifications.
    For the larger units, we strategically place them in freight containers, implementing secure fastening methods to safeguard            against any potential damage during the shipping process.

Q:What are your payment terms?
A:Usually, the payment is made by T/T with a 30% down payment CHINAMFG confirmation of the Proforma Invoice (PI), and the balance is to be paid after inspection and before shipment. We accept both TT and L/C at sight.

Send message  Get product Offer & Brochure!!!

 ↓↓↓

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Local Teams
Warranty: 18 Months
Lubrication Style: Oil-free
Cooling System: Air Cooling/Water Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Customized
Samples:
US$ 40000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

Can Gas Air Compressors Be Used for Well Drilling?

Gas air compressors can be used for well drilling, and they are commonly employed in drilling operations. Here’s a detailed explanation:

1. Air Drilling Method:

Gas air compressors are often utilized in the air drilling method, also known as pneumatic drilling. In this drilling technique, compressed air is used to create a high-velocity airflow that carries the drill cuttings to the surface. The high-pressure air also aids in cooling the drill bit and providing additional force for efficient drilling.

2. Benefits of Gas Air Compressors:

Gas air compressors offer several advantages for well drilling:

  • Portability: Gas air compressors can be easily transported to remote drilling sites, allowing for flexibility in well location.
  • Power: Gas air compressors provide high-pressure air output, which is essential for effective drilling in various geological formations.
  • Cost-Effectiveness: Gas air compressors can be more cost-effective compared to other drilling methods, as they eliminate the need for drilling mud and associated disposal costs.
  • Environmental Considerations: Air drilling with gas compressors produces minimal waste and does not require the use of potentially harmful drilling fluids, making it an environmentally friendly option.

3. Compressor Selection:

When selecting a gas air compressor for well drilling, several factors should be considered:

  • Pressure and Flow Requirements: Evaluate the pressure and flow requirements of the drilling operation to ensure that the gas air compressor can deliver the necessary air output.
  • Compressor Size and Power: Choose a compressor with adequate size and power output to match the drilling demands. Factors such as borehole depth, drill bit type, and drilling speed will influence the compressor’s power requirements.
  • Portability: Consider the portability features of the gas air compressor, such as its weight, dimensions, and mobility options, to facilitate transportation to drilling sites.

4. Safety Considerations:

It is essential to follow safety guidelines when using gas air compressors for well drilling. These may include proper ventilation to prevent the accumulation of exhaust fumes, adherence to equipment operating limits, and the use of personal protective equipment (PPE) for drilling personnel.

5. Other Considerations:

While gas air compressors are commonly used for well drilling, it is worth noting that the suitability of a gas air compressor for a specific drilling project depends on various factors such as geological conditions, well depth, and drilling objectives. It is recommended to consult with drilling experts and professionals to determine the most suitable drilling method and equipment for a particular project.

In summary, gas air compressors can be effectively used for well drilling, particularly in the air drilling method. They offer portability, power, cost-effectiveness, and environmental advantages. Proper selection, considering pressure and flow requirements, as well as safety precautions, is crucial to ensure successful and safe drilling operations.

air compressor

What Is the Impact of Altitude on Gas Air Compressor Performance?

Altitude can have a significant impact on the performance of gas air compressors. Here’s a detailed explanation:

1. Decreased Air Density:

As altitude increases, the air density decreases. This reduction in air density affects the performance of gas air compressors, primarily because compressors rely on the intake of ambient air to generate compressed air. With lower air density at higher altitudes, the compressor’s ability to draw in a sufficient volume of air is reduced.

2. Reduced Compressor Output:

The decrease in air density directly affects the compressor’s output. Gas air compressors may experience a decrease in their maximum airflow and pressure capabilities at higher altitudes. This reduction in output can impact the compressor’s efficiency and its ability to deliver the required compressed air for various applications.

3. Increased Compressor Workload:

At higher altitudes, gas air compressors need to work harder to maintain the desired level of compressed air output. The reduced air density means the compressor must compress a larger volume of air to achieve the same pressure as it would at lower altitudes. This increased workload can lead to higher energy consumption, increased wear and tear on the compressor components, and potentially decreased overall performance and lifespan.

4. Engine Power Loss:

If the gas air compressor is powered by an internal combustion engine (such as gasoline or diesel), altitude can also impact the engine’s performance. As the air density decreases, the engine may experience a power loss due to reduced oxygen availability for combustion. This can result in reduced engine horsepower and torque, affecting the compressor’s ability to generate compressed air.

5. Considerations for Proper Sizing:

When selecting a gas air compressor for use at higher altitudes, it is crucial to consider the specific altitude conditions and adjust the compressor’s size and capacity accordingly. Choosing a compressor with a higher airflow and pressure rating than required at sea level can help compensate for the reduced performance at higher altitudes.

6. Maintenance and Adjustments:

Regular maintenance and adjustments are necessary to optimize the performance of gas air compressors operating at higher altitudes. This includes monitoring and adjusting the compressor’s intake systems, fuel-to-air ratio, and ignition timing to account for the reduced air density and maintain proper combustion efficiency.

In summary, altitude has a notable impact on the performance of gas air compressors. The decrease in air density at higher altitudes leads to reduced compressor output, increased compressor workload, potential engine power loss, and considerations for proper sizing and maintenance. Understanding these effects is crucial for selecting and operating gas air compressors effectively in various altitude conditions.

air compressor

Can Gas Air Compressors Be Used in Remote Locations?

Yes, gas air compressors are well-suited for use in remote locations where access to electricity may be limited or unavailable. Their portability and reliance on gas engines make them an ideal choice for providing a reliable source of compressed air in such environments. Here’s a detailed explanation of how gas air compressors can be used in remote locations:

1. Independence from Electrical Grid:

Gas air compressors do not require a direct connection to the electrical grid, unlike electric air compressors. This independence from the electrical grid allows gas air compressors to be used in remote locations, such as wilderness areas, remote job sites, or off-grid locations, where it may be impractical or cost-prohibitive to establish electrical infrastructure.

2. Mobility and Portability:

Gas air compressors are designed to be portable and easy to transport. They are often equipped with handles, wheels, or trailers, making them suitable for remote locations. The gas engine powering the compressor provides mobility, allowing the compressor to be moved to different areas within the remote location as needed.

3. Fuel Versatility:

Gas air compressors can be fueled by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This fuel versatility ensures that gas air compressors can adapt to the available fuel sources in remote locations. For example, if gasoline or diesel is readily available, the gas air compressor can be fueled with these fuels. Similarly, if natural gas or propane is accessible, the compressor can be configured to run on these gases.

4. On-Site Power Generation:

In remote locations where electricity is limited, gas air compressors can serve as on-site power generators. They can power not only the compressor itself but also other equipment or tools that require electricity for operation. This versatility makes gas air compressors useful for a wide range of applications in remote locations, such as powering lights, tools, communication devices, or small appliances.

5. Off-Grid Operations:

Gas air compressors enable off-grid operations, allowing tasks and activities to be carried out in remote locations without relying on external power sources. This is particularly valuable in industries such as mining, oil and gas exploration, forestry, or construction, where operations may take place in remote and isolated areas. Gas air compressors provide the necessary compressed air for pneumatic tools, drilling equipment, and other machinery required for these operations.

6. Emergency Preparedness:

Gas air compressors are also beneficial for emergency preparedness in remote locations. In situations where natural disasters or emergencies disrupt the power supply, gas air compressors can provide a reliable source of compressed air for essential equipment and systems. They can power emergency lighting, communication devices, medical equipment, or backup generators, ensuring operational continuity in critical situations.

7. Adaptability to Challenging Environments:

Gas air compressors are designed to withstand various environmental conditions, including extreme temperatures, humidity, dust, and vibrations. This adaptability to challenging environments makes them suitable for use in remote locations, where environmental conditions may be harsh or unpredictable.

Overall, gas air compressors can be effectively used in remote locations due to their independence from the electrical grid, mobility, fuel versatility, on-site power generation capabilities, suitability for off-grid operations, emergency preparedness, and adaptability to challenging environments. These compressors provide a reliable source of compressed air, enabling a wide range of applications in remote settings.

China manufacturer Best Quality High Pressure Oil Free Ammonia Hydrogen Natural Gas Piston Compressor Reciprocating Compressor Price   with Hot sellingChina manufacturer Best Quality High Pressure Oil Free Ammonia Hydrogen Natural Gas Piston Compressor Reciprocating Compressor Price   with Hot selling
editor by CX 2024-03-29

China Good quality Factory Price Large Flow Oil Lubrication CH4 Methane Pressure Booster Natural Gas Compressor Reciprocating Natural Gas Compressor mini air compressor

Product Description

Detailed Photos

Factory Price Large Flow Oil Lubrication CH4 Methane Pressure Booster
Natural Gas Compressor Reciprocating Natural Gas Compressor

Description&Advantages

Product Descriptions:
Mainly used for boosting and transporting natural gas into the pipeline network (natural gas extraction from pipelines, recovery and cHangZhou of combustible gases). It can also be used for stirring in the pharmaceutical and brewing industries, pressurized gas transportation in the chemical industry, blow molding for bottle production in the food industry, and dust removal from parts in machinery manufacturing

Advantages:
Our products, incorporating technology from Austria’s LMF and Germany’s CHINAMFG Demag companies, exhibit high reliability. Wearable parts like gas valves and piston rings use products from Austria’s Hoerbiger company, with a lifespan exceeding 8000 hours. The system supports soft starting, allowing frequent start and stop cycles for the compressor.  It features a wide intake range for broad adaptability. The overall skid-mounted structure results in low noise and is easy to install in urban areas, leading to investment savings.
It is equipped with a CHINAMFG PLC control system for high automation, ABB soft start (or variable frequency), and features automatic shutdown with audible and visual alarms in case of faults

Product Parameters

Model Flow
m3/h
Inlet Pressure
(Mpa)
Outlet Pressure (Mpa) Weight(Kg) Power(Kw)
VW-6/16-24 360 1.6 2.4 2600 110
VW-6/(0-1.62)-(5-21) 360 0-0.162 0.5-2.1 2350 75
WW-26.7/0.5-10 1602 0.05 1 4500 250
DW-2/0.2-16 120 0.02 1.6 1500 22
WW-3/8 180 normal pressure 0.8 1500 22
2VW-50/3.5 3000 normal pressure 0.35 6000 220
2VW-16.7/0.5-20 1002 0.05 2 6500 185
ZW-0.6/6-10 36 0.6 1 760 5.5
ZW-0.8/12 48 normal pressure 1.2 1200 7.5
DW-9.5/7 570 normal pressure 0.7 2600 55
VW-4.5/0.5-10 270 0.05 1 2100 37
2VW-25/25 1500 normal pressure 2.5 2100 250
2VW-50/3.5 3000 normal pressure 0.35 6000 220
DW-4.5/0.5-13 270 0.05 1.3 2500 18.5
ZW-0.46/(5-10)-(15-20) 27.6 0.5-1.0 1.5-2.0 850 11
VW-5.6/(1.5-2)-25 336 0.15-0.2 2.5 2000 55
V-6.5/(1-3)-7 390 0.1-0.3 0.7 1900 37
WW-2.5/3-250 150 0.3 25 3500 110

Our Factory

 

Part of Customer Visit

 

Certifications & Testing

 

Related Product

 

FAQ

Q:Are you a factory?

A:Yes, we are indeed a factory. We specialize in manufacturing high-quality Air/Gas Compressors and are proud to be a primary source for these products.

Q:How long is your delivery time?
A:It varies depending on the specific situation. For our standard configuration compressors, the delivery time is around 30 days. For customized compressors, it usually takes about 30-45 days.

Q:What technical support do you offer?
A:We offer comprehensive technical support to our clients, including remote assistance for installation and commissioning processes. Additionally, we have a team of seasoned engineers ready to be deployed to international client locations for meticulous on-site debugging, installation, and post-installation services.

Q:What is your warranty period?
A:Our warranty policy is valid for a period of 18 months from the date of commissioning at the end customer’s site or 21 months from the date of receipt by the purchaser, whichever comes first. This comprehensive coverage is designed to ensure total customer satisfaction and the reliability of our products

Q:How do you package the compressors?
A:For smaller compressors, we utilize robust plywood boxes that conform to export specifications.
    For the larger units, we strategically place them in freight containers, implementing secure fastening methods to safeguard            against any potential damage during the shipping process.

Q:What are your payment terms?
A:Usually, the payment is made by T/T with a 30% down payment CHINAMFG confirmation of the Proforma Invoice (PI), and the balance is to be paid after inspection and before shipment. We accept both TT and L/C at sight.

Send message  Get product Offer & Brochure!!!

 ↓↓↓

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Local Teams
Warranty: 18 Months
Lubrication Style: Oil-free
Cooling System: Air Cooling/Water Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Customized
Samples:
US$ 40000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

How Do You Troubleshoot Common Issues with Gas Air Compressors?

Troubleshooting common issues with gas air compressors involves identifying and addressing potential problems that may arise during operation. Here’s a detailed explanation of the troubleshooting process:

1. Start with Safety Precautions:

Prior to troubleshooting, ensure that the gas air compressor is turned off and disconnected from the power source. Follow proper safety procedures, such as wearing appropriate personal protective equipment (PPE), to avoid accidents or injuries.

2. Check Power Supply and Connections:

Verify that the compressor is receiving power and that all electrical connections are secure. Inspect the power cord, plug, and any switches or controls to ensure they are functioning properly. If the compressor is equipped with a battery, check its charge level and connections.

3. Check Fuel Supply:

For gas air compressors that use gasoline or propane, ensure that there is an adequate fuel supply. Check the fuel tank level and verify that the fuel shut-off valve is open. If the compressor has been sitting idle for an extended period, old or stale fuel may cause starting issues. Consider draining and replacing the fuel if necessary.

4. Inspect Air Filters:

Dirty or clogged air filters can restrict airflow and affect the compressor’s performance. Check the intake air filters and clean or replace them as needed. Clogged filters can be cleaned with compressed air or washed with mild detergent and water, depending on the type of filter.

5. Check Oil Level and Quality:

If the gas air compressor has an engine with an oil reservoir, verify the oil level using the dipstick or oil level indicator. Insufficient oil can lead to engine damage or poor performance. Additionally, check the oil quality to ensure it is clean and within the recommended viscosity range. If needed, change the oil following the manufacturer’s guidelines.

6. Inspect Spark Plug:

If the gas air compressor uses a spark plug ignition system, inspect the spark plug for signs of damage or fouling. Clean or replace the spark plug if necessary, following the manufacturer’s recommendations for gap setting and torque.

7. Check Belts and Pulleys:

Inspect the belts and pulleys that drive the compressor pump. Loose or worn belts can cause slippage and affect the compressor’s performance. Tighten or replace any damaged belts, and ensure that the pulleys are properly aligned.

8. Listen for Unusual Noises:

During operation, listen for any unusual or excessive noises, such as grinding, rattling, or squealing sounds. Unusual noises could indicate mechanical issues, loose components, or improper lubrication. If identified, consult the compressor’s manual or contact a qualified technician for further inspection and repair.

9. Consult the Owner’s Manual:

If troubleshooting steps do not resolve the issue, refer to the compressor’s owner’s manual for specific troubleshooting guidance. The manual may provide additional troubleshooting steps, diagnostic charts, or recommended maintenance procedures.

10. Seek Professional Assistance:

If the issue persists or if you are unsure about performing further troubleshooting steps, it is recommended to seek assistance from a qualified technician or contact the manufacturer’s customer support for guidance.

Remember to always prioritize safety and follow proper maintenance practices to prevent issues and ensure the reliable performance of the gas air compressor.

air compressor

How Do Gas Air Compressors Contribute to Energy Savings?

Gas air compressors can contribute to energy savings in several ways. Here’s a detailed explanation:

1. Efficient Power Source:

Gas air compressors are often powered by gasoline or diesel engines. Compared to electric compressors, gas-powered compressors can provide higher power output for a given size, resulting in more efficient compression of air. This efficiency can lead to energy savings, especially in applications where a significant amount of compressed air is required.

2. Reduced Electricity Consumption:

Gas air compressors, as standalone units that don’t rely on electrical power, can help reduce electricity consumption. In situations where the availability of electricity is limited or expensive, using gas air compressors can be a cost-effective alternative. By utilizing fuel-based power sources, gas air compressors can operate independently from the electrical grid and reduce dependence on electricity.

3. Demand-Sensitive Operation:

Gas air compressors can be designed to operate on demand, meaning they start and stop automatically based on the air requirements. This feature helps prevent unnecessary energy consumption during periods of low or no compressed air demand. By avoiding continuous operation, gas air compressors can optimize energy usage and contribute to energy savings.

4. Energy Recovery:

Some gas air compressors are equipped with energy recovery systems. These systems capture and utilize the heat generated during the compression process, which would otherwise be wasted. The recovered heat can be redirected and used for various purposes, such as space heating, water heating, or preheating compressed air. This energy recovery capability improves overall energy efficiency and reduces energy waste.

5. Proper Sizing and System Design:

Selecting the appropriate size and capacity of a gas air compressor is crucial for energy savings. Over-sizing a compressor can lead to excessive energy consumption, while under-sizing can result in inefficient operation and increased energy usage. Properly sizing the compressor based on the specific air demands ensures optimal efficiency and energy savings.

6. Regular Maintenance:

Maintaining gas air compressors in good working condition is essential for energy efficiency. Regular maintenance, including cleaning or replacing air filters, checking and repairing leaks, and ensuring proper lubrication, helps optimize compressor performance. Well-maintained compressors operate more efficiently, consume less energy, and contribute to energy savings.

7. System Optimization:

For larger compressed air systems that involve multiple compressors, implementing system optimization strategies can further enhance energy savings. This may include employing advanced control systems, such as variable speed drives or sequencers, to match compressed air supply with demand, minimizing unnecessary energy usage.

In summary, gas air compressors contribute to energy savings through their efficient power sources, reduced electricity consumption, demand-sensitive operation, energy recovery systems, proper sizing and system design, regular maintenance, and system optimization measures. By utilizing gas-powered compressors and implementing energy-efficient practices, businesses and industries can achieve significant energy savings in their compressed air systems.

air compressor

What Are the Primary Applications of Gas Air Compressors?

Gas air compressors have a wide range of applications across various industries and activities. These compressors, powered by gas engines, provide a portable and versatile source of compressed air. Here’s a detailed explanation of the primary applications of gas air compressors:

1. Construction Industry:

Gas air compressors are extensively used in the construction industry. They power a variety of pneumatic tools and equipment, such as jackhammers, nail guns, impact wrenches, and concrete breakers. The portable nature of gas air compressors makes them ideal for construction sites where electricity may not be readily available or practical to use.

2. Agriculture and Farming:

Gas air compressors find applications in the agricultural sector. They are used to operate air-powered machinery and tools, including pneumatic seeders, sprayers, and agricultural pumps. Gas air compressors provide the necessary power to carry out tasks such as crop seeding, irrigation, and pest control in agricultural settings.

3. Recreational Activities:

Gas air compressors are commonly utilized in recreational activities. They are used to inflate tires, sports balls, inflatable structures, and recreational equipment such as air mattresses, rafts, and inflatable toys. Gas air compressors provide a convenient and portable solution for inflating various recreational items in outdoor settings.

4. Mobile Service Operations:

Gas air compressors are employed in mobile service operations, such as mobile mechanics, tire service providers, and mobile equipment repair services. These compressors power air tools and equipment required for on-site repairs, maintenance, and servicing of vehicles, machinery, and equipment. The mobility of gas air compressors allows service providers to bring their tools and compressed air source directly to the location of the service requirement.

5. Remote Job Sites:

Gas air compressors are well-suited for remote job sites or locations without access to electricity. They are commonly used in industries such as mining, oil and gas exploration, and remote construction projects. Gas air compressors power pneumatic tools, machinery, and drilling equipment in these environments, providing a reliable source of compressed air for operational needs.

6. Emergency and Backup Power:

In emergency situations or during power outages, gas air compressors can serve as a backup power source. They can power essential equipment and systems that rely on compressed air, such as emergency lighting, communication devices, medical equipment, and backup generators. Gas air compressors provide a reliable alternative power solution when electrical power is unavailable or unreliable.

7. Sandblasting and Surface Preparation:

Gas air compressors are used in sandblasting and surface preparation applications. They provide the high-pressure air necessary for propelling abrasive media, such as sand or grit, to remove paint, rust, or other coatings from surfaces. Gas air compressors offer the power and portability required for sandblasting operations in various industries, including automotive, metal fabrication, and industrial maintenance.

8. Off-Road and Outdoor Equipment:

Gas air compressors are commonly integrated into off-road and outdoor equipment, such as off-road vehicles, utility trucks, and recreational vehicles. They power air-operated systems, including air suspension systems, air brakes, air lockers, and air horns. Gas air compressors provide the necessary compressed air for reliable and efficient operation of these systems in rugged and outdoor environments.

Overall, gas air compressors have diverse applications in construction, agriculture, recreational activities, mobile service operations, remote job sites, emergency power backup, sandblasting, and various off-road and outdoor equipment. Their portability, versatility, and reliable power supply make them indispensable tools in numerous industries and activities.

China Good quality Factory Price Large Flow Oil Lubrication CH4 Methane Pressure Booster Natural Gas Compressor Reciprocating Natural Gas Compressor   mini air compressorChina Good quality Factory Price Large Flow Oil Lubrication CH4 Methane Pressure Booster Natural Gas Compressor Reciprocating Natural Gas Compressor   mini air compressor
editor by CX 2024-03-28