China Good quality Good Workmanship Air CHINAMFG for Building with high quality

Product Description

Product Description

ZIQI CHINAMFG Screw Air Compressor Advantages:

A.80% components of CHINAMFG Compressor adopt global well known reliable brand to make sure the air compressor with high quality,durable,energy saving:
1.Core part:Germany GHH RAND screw air end ;
2.Motor:adopt Brazil WEG brand,the second biggest motor manufacturer in the world,IE4 energy saving standard 3 phase induction motor,IP55 protection;
3.Italian EURE oil air vessel ,the lead pressure vessel manufacturer in the world;
4.Italian Manuli oil tube ;
5.French Schneider electric system;
6.Sweden CHINAMFG bearings

Energy saving:
The air compressor equiped the frequency inverter,to make the air compressor with variable speed drive [VSD].The principle of VSD is to adjust the motor rotation speed automatically according to the actual air consumption. The reduced system pressure decreases the total energy consumption of the whole system, which can reduce energy costs by 35% or more.

Technical Parameter

Model Air pressure Max air displacement  Motor power transmission dimension Weight Noise Outlet
cooling type
mpa bar(e)  psi(g)  m3/min  cfm  hp  kw  belt drive 
&
air cooling
L(mm) W(mm) H(mm) Kgs dB(A) mm
GA-3.7A 0.7 7 102 0.55 19 5 3.7  680  660  780  220 60±2  20
0.8 8 116 0.45 16
1 10 145 0.35 12
GA-5.5A 0.7 7 102 0.8 28 7 5.5 680 660 780 230 61±2 20
0.8 8 116 0.7 25
1 10 145 0.6 21
1.3 13 189 0.5 18
GAS-7.5A VFC 0.7 7 102 1.3 46 10 7.5 950 650 915 270 62±2 20
0.8 8 116 1.2 42
1 10 145 1.1 39
1.3 13 189 0.9 32
GAS-11A VFC 0.7 7 102 1.8 64 15 11 950 650 915 280 63±2 20
0.8 8 116 1.7 60
1 10 145 1.5 53
1.3 13 189 1.2 42
GAS-15A VFC 0.7 7 102 2.7 95 20 15 1260 850 1220 540 66±2 25
0.8 8 116 2.5 88
1 10 145 2.3 81
1.3 13 189 2 71
GAS-18.5A VFC 0.7 7 102 3.2 113 25 18.5 1260 850 1220 550 67±2 25
0.8 8 116 3 106
1 10 145 2.8 99
1.3 13 189 2.4 85
GAS-22A VFC 0.7 7 102 3.8 134 30 22 1260 850 1220 560 67±2 25
0.8 8 116 3.6 127
1 10 145 3.2 113
1.3 13 189 2.8 99
GAS-30A VFC 0.7 7 102 5.7 201 40 30 1500 970 1375 780 67±2 40
0.8 8 116 5.5 194
1 10 145 5 177
1.3 13 189 4.5 159
GAS-37A VFC 0.7 7 102 6.8 240 50 37 1500 970 1375 800 68±2 40
0.8 8 116 6.31 222
1 10 145 5.7 201
1.3 13 189 5 177
GAS-45A VFC 0.7 7 102 7.9 279 60 45 1500 970 1375 820 69±2 40
0.8 8 116 7.4 261
1 10 145 6.9 244
1.3 13 189 6.1 215
GAS-55A VFC 0.7 7 102 10.9 385 75 55 direct drive &air cooling or water cooling 2150 1326 1766 1550 69±2 50
0.8 8 116 10.4 367
1 10 145 9.4 332
1.3 13 189 8.6 304
GAS-75A VFC 0.7 7 102 14.5 512 100 75 2150 1326 1766 1600 70±2 50
0.8 8 116 13.8 487
1 10 145 12.6 445
1.3 13 189 11.2 395
GAS-90A VFC 0.7 7 102 17 600 120 90 2545 1450 1900 2500 75±2 65
0.8 8 116 16.5 583
1 10 145 15.2 537
1.3 13 189 14 494

*For other requirements,please contact the salesman.

Company Information

Packaging & Shipping

FAQ

 

Are you manufacturer?
ZIQI: Yes,we are professional air compressor manufacturer over 10 years and our factory located in ZheJiang .
How long is your air compressor warranty?
ZIQI: For 1 year.
Do you provide After- sales service parts?
ZIQI: Of course, We could provide easy- consumable spares.
How long could your air compressor be used?
ZIQI: Generally, more than 10 years.
How about your price?
ZIQI: Based on high quality, Our price is very competitive in this market all over the world.
How about your customer service?
ZIQI: For email, we could reply our customers’ emails within 2 hours.
Do you support OEM?
ZIQI: YES, and we also provide multiple models to select.

How to get quicker quotation?

When you send us inquiry, please confirm below information at the same time:
* What is the air displacement (m3/min,cfm/min)?
* What is the air pressure (mpa,bar,psi)?
* What is the voltage in your factory (v/p/Hz)?
* It is ok if you need air tank, air dryer and filters.
This information is helpful for us to check suitable equipment solution and quotation quickly.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Online Support
Warranty: 2 Years
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Cylinder Position: Vertical
Customization:
Available

|

air compressor

What Is the Fuel Efficiency of Gas Air Compressors?

The fuel efficiency of gas air compressors can vary depending on several factors, including the compressor’s design, engine size, load capacity, and usage patterns. Gas air compressors typically use internal combustion engines powered by gasoline or propane to generate the mechanical energy required for compressing air. Here’s a detailed explanation of the factors that can influence the fuel efficiency of gas air compressors:

1. Engine Design and Size:

The design and size of the engine in a gas air compressor can impact its fuel efficiency. Engines with advanced technologies such as fuel injection and electronic controls tend to offer better fuel efficiency compared to older carbureted engines. Additionally, larger engines may consume more fuel to produce the required power, resulting in lower fuel efficiency compared to smaller engines for the same workload.

2. Load Capacity and Usage Patterns:

The load capacity and usage patterns of the gas air compressor play a significant role in fuel efficiency. Compressors operating at or near their maximum load capacity for extended periods may consume more fuel compared to compressors operating at lower loads. Additionally, compressors used intermittently or for lighter tasks may have better fuel efficiency due to reduced demand on the engine.

3. Maintenance and Tuning:

Proper maintenance and tuning of the gas air compressor’s engine can improve fuel efficiency. Regular maintenance tasks such as oil changes, air filter cleaning/replacement, spark plug inspection, and tuning the engine to the manufacturer’s specifications can help ensure optimal engine performance and fuel efficiency.

4. Operating Conditions:

The operating conditions, including ambient temperature, altitude, and humidity, can affect the fuel efficiency of gas air compressors. Extreme temperatures or high altitudes may require the engine to work harder, resulting in increased fuel consumption. Additionally, operating in humid conditions can affect the combustion process and potentially impact fuel efficiency.

5. Fuel Type:

The type of fuel used in the gas air compressor can influence its fuel efficiency. Gasoline and propane are common fuel choices for gas air compressors. The energy content and combustion characteristics of each fuel can affect the amount of fuel consumed per unit of work done. It is important to consider the specific fuel requirements and recommendations of the compressor manufacturer for optimal fuel efficiency.

6. Operator Skills and Practices:

The skills and practices of the operator can also impact fuel efficiency. Proper operation techniques, such as avoiding excessive idling, maintaining consistent engine speeds, and minimizing unnecessary load cycles, can contribute to improved fuel efficiency.

It is important to note that specific fuel efficiency ratings for gas air compressors can vary widely depending on the aforementioned factors. Manufacturers may provide estimated fuel consumption rates or fuel efficiency data for their specific compressor models, which can serve as a reference point when comparing different models or making purchasing decisions.

Ultimately, to maximize fuel efficiency, it is recommended to select a gas air compressor that suits the intended application, perform regular maintenance, follow the manufacturer’s guidelines, and operate the compressor efficiently based on the workload and conditions.

air compressor

How Do You Transport Gas Air Compressors to Different Job Sites?

Transporting gas air compressors to different job sites requires careful planning and consideration of various factors. Here’s a detailed explanation:

1. Equipment Size and Weight:

The size and weight of the gas air compressor are crucial factors to consider when planning transportation. Gas air compressors come in different sizes and configurations, ranging from portable units to larger, skid-mounted or trailer-mounted compressors. Assess the dimensions and weight of the compressor to determine the appropriate transportation method.

2. Transportation Modes:

Gas air compressors can be transported using different modes of transportation, depending on their size, weight, and distance to the job site:

  • Truck or Trailer: Smaller gas air compressors can be loaded onto a truck bed or trailer for transportation. Ensure that the vehicle or trailer has the necessary capacity to accommodate the weight and dimensions of the compressor.
  • Flatbed or Lowboy Trailer: Larger gas compressors or skid-mounted units may require transportation on a flatbed or lowboy trailer. These trailers are designed to carry heavy equipment and provide stability during transportation.
  • Shipping Container: For long-distance transportation or international shipments, gas air compressors can be transported in shipping containers. The compressor must be properly secured and protected within the container to prevent any damage during transit.

3. Securing and Protection:

It is essential to secure the gas air compressor properly during transportation to prevent shifting or damage. Use appropriate tie-down straps, chains, or fasteners to secure the compressor to the transport vehicle or trailer. Protect the compressor from potential impacts, vibrations, and weather conditions by using suitable covers, padding, or weatherproof enclosures.

4. Permits and Regulations:

Depending on the size and weight of the gas air compressor, special permits or escorts may be required for transportation. Familiarize yourself with local, state, and federal regulations regarding oversize or overweight loads, and obtain the necessary permits to ensure compliance with transportation laws.

5. Route Planning:

Plan the transportation route carefully, considering factors such as road conditions, height and weight restrictions, bridges, tunnels, and any other potential obstacles. Identify alternative routes if needed, and communicate with transportation authorities or agencies to ensure a smooth and safe journey.

6. Equipment Inspection and Maintenance:

Prior to transportation, conduct a thorough inspection of the gas air compressor to ensure it is in proper working condition. Check for any leaks, damage, or loose components. Perform routine maintenance tasks, such as oil changes, filter replacements, and belt inspections, to minimize the risk of equipment failure during transportation.

In summary, transporting gas air compressors to different job sites requires considering factors such as equipment size and weight, choosing appropriate transportation modes, securing and protecting the compressor, obtaining necessary permits, planning the route, and conducting equipment inspection and maintenance. Careful planning and adherence to transportation regulations contribute to the safe and efficient transportation of gas air compressors.

air compressor

What Is a Gas Air Compressor?

A gas air compressor is a type of air compressor that is powered by a gas engine instead of an electric motor. It uses a combustion engine, typically fueled by gasoline or diesel, to convert fuel energy into mechanical energy, which is then used to compress air. Here’s a detailed explanation of a gas air compressor:

1. Power Source:

A gas air compressor utilizes a gas engine as its power source. The engine can be fueled by gasoline, diesel, or other types of combustible gases, such as natural gas or propane. The combustion engine drives the compressor pump to draw in air and compress it to a higher pressure.

2. Portable and Versatile:

Gas air compressors are often designed to be portable and versatile. The gas engine provides mobility, allowing the compressor to be easily transported and used in different locations, including remote job sites or areas without access to electricity. This makes gas air compressors suitable for applications such as construction projects, outdoor activities, and mobile service operations.

3. Compressor Pump:

The compressor pump in a gas air compressor is responsible for drawing in air and compressing it. The pump can be of various types, including reciprocating, rotary screw, or centrifugal, depending on the specific design of the gas air compressor. The pump’s role is to increase the pressure of the incoming air, resulting in compressed air that can be used for various applications.

4. Pressure Regulation:

Gas air compressors typically feature pressure regulation mechanisms to control the output pressure of the compressed air. This allows users to adjust the pressure according to the requirements of the specific application. The pressure regulation system may include pressure gauges, regulators, and safety valves to ensure safe and reliable operation.

5. Applications:

Gas air compressors find applications in a wide range of industries and activities. They are commonly used in construction sites for powering pneumatic tools such as jackhammers, nail guns, and impact wrenches. Gas air compressors are also utilized in agriculture for operating air-powered machinery like sprayers and pneumatic seeders. Additionally, they are employed in recreational activities such as inflating tires, sports equipment, or inflatable structures.

6. Maintenance and Fuel Considerations:

Gas air compressors require regular maintenance, including engine servicing, oil changes, and filter replacements, to ensure optimal performance and longevity. The type of fuel used in the gas engine also needs to be considered. Gasoline-powered compressors are commonly used in smaller applications, while diesel-powered compressors are preferred for heavy-duty and continuous operation due to their higher fuel efficiency and durability.

Overall, a gas air compressor is an air compressor that is powered by a gas engine, offering mobility and versatility. It provides compressed air for various applications and is commonly used in construction, agriculture, and outdoor activities. Regular maintenance and fuel considerations are essential to ensure reliable operation and optimal performance.

China Good quality Good Workmanship Air CHINAMFG for Building   with high qualityChina Good quality Good Workmanship Air CHINAMFG for Building   with high quality
editor by CX 2024-05-03

China wholesaler Hot Selling CHINAMFG for Fruit and Meat Preservation Storage small air compressor

Product Description

Using ammonia as a refrigerant has the following advantages:
1. Ammonia is the cheapest refrigerant besides air and water.
2. The standard boiling temperature is low, and the pressure is moderate in the condenser and evaporator.
3. A large refrigeration capacity per unit volume requires less refrigerant circulation per unit cooling capacity, high thermal conductivity, and high latent heat of vaporization.
4. Low throttling loss and high operating efficiency.
5. Low operating pressure, low requirements for machines, and low material cost for refrigeration systems.
6. There is a pungent odor, which is easily detected by the odor, leak test paper, and test drug in case of leakage. When the air contains 50mg/m3 of ammonia, the human sense of smell can distinguish it.
7. Insoluble with mineral oil, easily separated from oil at low temperatures, ammonia has a lower density than oil, and refrigeration oil often sinks below the ammonia liquid, making it convenient to return oil to the refrigeration system.
8. Thermodynamic and chemical properties are stable at room temperature and low temperature.
9. ODP=0, GWP=0.
The amount of ammonia filling in the system is closely related to the possibility of danger. In system design, measures such as optimizing the system, using plate heat exchangers and dry shell evaporators, using nitrogen direct expansion supply, and using NH3/CO2 cascade refrigeration cycles can significantly reduce the amount of refrigerant filling. In addition, a large ammonia refrigeration system simplified by using direct expansion supply and lubricating oil that is miscible with ammonia will greatly reduce the amount of ammonia used due to system simplification.
Using high-efficiency air coolers to reduce the amount of ammonia stored in the cold room. The current international trend in the development of ammonia systems is to reduce the amount of ammonia injected into the system and choose efficient and energy-saving air coolers. The high-efficiency variable pitch stainless steel coil air cooler can be used as the evaporator in the warehouse, which only accounts for 5% of the traditional smooth discharge pipe ammonia injection amount at the same cooling capacity, reducing the ammonia injection amount by 95%.
The design of ammonia refrigeration system should adopt automatic control as much as possible to reduce leakage and ensure the safety of operators.

FAQ:
1,How strong is your company?
Answer:Our company was established in 2011 and has a professional cold storage design team, installation team, and experienced after-sales maintenance personnel. We can provide a complete set of cold storage design, installation guidance, and after-sales maintenance services.
2,Why did we choose you?
Answer:We can provide you with suitable prices and professional services, so that you can use our products with peace of mind.
3,How long is the delivery time?
Answer:15-35 days after we confirm your request.
4,How do you package the compressor?
Answer:For smaller goods, we use sturdy plywood boxes that comply with export regulations. For larger goods, we strategically place them in freight containers and use safe fastening methods to prevent any potential damage during transportation.
5,What are your payment terms?
Answer:Usually, a 30% down payment is made through T/T after confirming the Proforma Invoice (PI), and the balance will be paid after inspection and before shipment. We accept telegraphic transfer and sight letter of credit.
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Engineers Can Go Overseas for Repairs
Warranty: One Year After Shipment
Lubrication Style: Lubricated
Cooling System: Water Cooling
Power Source: AC Power
Cylinder Position: Horizontal
Samples:
US$ 10000/Set
1 Set(Min.Order)

|
Request Sample

Customization:
Available

|

air compressor

What Safety Precautions Should Be Taken When Operating Screw Compressors?

When operating screw compressors, it is important to follow specific safety precautions to ensure the well-being of personnel and prevent potential accidents. Here’s a detailed explanation:

1. Familiarize Yourself with the Equipment:

  • Before operating a screw compressor, thoroughly read and understand the manufacturer’s instructions, safety guidelines, and operating procedures. Familiarize yourself with the specific features, controls, and safety devices of the compressor.

2. Wear Appropriate Personal Protective Equipment (PPE):

  • Wear the necessary PPE, such as safety glasses, hearing protection, gloves, and appropriate clothing, when operating the compressor. PPE helps protect against potential hazards, including flying debris, noise, and contact with hot or moving parts.

3. Ensure Proper Ventilation:

  • Operate the screw compressor in a well-ventilated area to prevent the buildup of potentially harmful gases or fumes. Ensure that the compressor’s intake and exhaust vents are not obstructed, allowing for adequate airflow.

4. Compressor Location:

  • Position the compressor on a stable and level surface to prevent tipping or instability during operation. Ensure that the compressor is located away from flammable materials, heat sources, or sources of ignition.

5. Electrical Safety:

  • Follow electrical safety guidelines and ensure that the compressor is properly grounded. Avoid using damaged or frayed electrical cords and ensure that the electrical connections are secure.

6. Lockout/Tagout Procedures:

  • Before performing any maintenance or repair tasks on the compressor, follow lockout/tagout procedures to isolate electrical power and prevent accidental startup. Lockout/tagout procedures help protect against unexpected energization of the compressor or its components.

7. Pressure Relief:

  • Before performing any maintenance tasks or opening the compressor, ensure that all pressure has been relieved from the system. Follow proper procedures for depressurizing the compressor and associated piping to avoid sudden releases of pressure.

8. Hot Surfaces:

  • Be cautious of hot surfaces, such as compressor casings, piping, or discharge components. Allow sufficient cooling time before touching or performing maintenance tasks on hot surfaces to avoid burns.

9. Maintenance and Inspection:

  • Adhere to the manufacturer’s recommended maintenance schedule and perform regular inspections of the compressor. Replace any worn or damaged components promptly to prevent potential hazards or malfunctions.

10. Emergency Procedures:

  • Be familiar with emergency procedures, including how to shut down the compressor in case of an emergency, how to respond to leaks or spills, and how to handle fire or electrical incidents. Have emergency contact information readily available.

11. Training and Qualified Personnel:

  • Ensure that operators and maintenance personnel are adequately trained in the safe operation and maintenance of screw compressors. Only allow qualified personnel to perform maintenance or repair tasks.

It is essential to consult the specific safety guidelines provided by the manufacturer of the screw compressor as they may include additional precautions or recommendations.

In summary, when operating screw compressors, it is important to familiarize yourself with the equipment, wear appropriate PPE, ensure proper ventilation, follow electrical safety measures, implement lockout/tagout procedures, be cautious of hot surfaces, perform regular maintenance and inspections, and be prepared with emergency procedures. By following these safety precautions, the risk of accidents or injuries can be minimized, ensuring a safe working environment when operating screw compressors.

air compressor

Can Screw Compressors Be Used for Medical Air Supply?

Yes, screw compressors can be used for medical air supply. Here’s a detailed explanation:

Screw compressors are commonly employed in various applications, including medical air supply systems. Medical air is a critical utility in healthcare facilities, used for various purposes such as respiratory therapy, anesthesia, and surgical tools. Here are some key points to consider:

1. Reliability and Efficiency:

Screw compressors are known for their reliability and efficiency. They can provide a continuous and reliable source of compressed air, ensuring a stable supply for medical applications. The rotary screw design allows for smooth and efficient compression, minimizing energy consumption and maximizing system performance.

2. Oil-Free Operation:

In medical applications, it is crucial to ensure the purity of the compressed air. Screw compressors can be designed and certified to provide oil-free air, eliminating the risk of oil contamination in the medical air supply. Oil-free screw compressors incorporate specialized sealing systems and filtration to prevent oil carryover, making them suitable for medical air applications.

3. Air Quality Standards:

Medical air must meet specific air quality standards to ensure patient safety and treatment effectiveness. Standards such as the European Pharmacopoeia (Ph. Eur.) or the United States Pharmacopeia (USP) define the required purity levels for medical air, including limits on particulate matter, moisture content, and microbial contamination. Screw compressors can be equipped with appropriate filtration and purification systems to meet these standards.

4. Integrated Drying and Filtration:

Some screw compressors designed for medical air applications incorporate integrated drying and filtration systems. These systems remove moisture and contaminants from the compressed air, ensuring it meets the required quality standards. Integrated drying systems can include refrigerated dryers, desiccant dryers, or membrane dryers, depending on the specific needs of the medical air supply system.

5. Redundancy and Backup Systems:

Medical air supply systems often require a high level of reliability and continuity. Screw compressors can be configured with redundancy and backup systems to ensure uninterrupted supply. Multiple compressors can be installed in parallel, with automatic switching mechanisms to maintain supply in case of a compressor failure or maintenance activities.

6. Monitoring and Alarms:

Modern screw compressors used in medical air supply systems often feature advanced monitoring capabilities. They can continuously monitor and record key parameters such as pressure, temperature, and system performance. Alarms and alerts can be configured to notify operators or maintenance personnel in case of abnormal conditions or potential issues with the compressor.

7. Compliance with Standards and Regulations:

When using screw compressors for medical air supply, it is essential to comply with relevant standards and regulations. These may include medical device regulations, electrical safety standards, and guidelines specific to medical gas systems. Compliance ensures that the medical air supply system meets the necessary safety and quality requirements.

In summary, screw compressors can be used for medical air supply, providing reliable and efficient compressed air for various medical applications. With their reliability, oil-free operation, adherence to air quality standards, integrated drying and filtration capabilities, and the ability to incorporate redundancy and monitoring features, screw compressors are well-suited for medical air supply systems in healthcare facilities.

air compressor

What Is a Screw Compressor?

A screw compressor is a type of positive displacement compressor that operates based on the principle of rotary motion. Here’s a detailed explanation:

Working Principle:

A screw compressor consists of two helical rotors, typically called male and female rotors, that rotate in opposite directions within a housing. The rotors have specially designed profiles that interlock with each other, creating a series of compression chambers as they rotate. As the rotors rotate, the volume of these chambers decreases, compressing the air or gas trapped inside.

Compression Process:

As the air or gas enters the screw compressor, it gets trapped between the rotors’ lobes or threads. As the rotors continue to rotate, the trapped air or gas is carried along the length of the rotors and gradually compressed. The compression occurs continuously and smoothly as the air or gas moves from the suction side to the discharge side of the compressor. The interlocking rotors ensure a continuous flow of compressed air or gas without pulsation.

Oil-Injected and Oil-Free Variants:

Screw compressors are available in both oil-injected and oil-free variants. In oil-injected screw compressors, a small amount of lubricating oil is injected into the compression chamber to provide lubrication, cooling, and sealing between the rotors. The oil also helps in reducing friction and minimizing wear. Oil-injected screw compressors are commonly used in various industrial applications where a small amount of oil in the compressed air is acceptable.

On the other hand, oil-free screw compressors are designed to operate without the need for oil lubrication. These compressors use specialized rotor coatings, such as PTFE (polytetrafluoroethylene) or other non-stick materials, to reduce friction and prevent the need for oil. Oil-free screw compressors are often favored in applications where oil-free and contaminant-free compressed air is essential, such as in food and beverage, pharmaceutical, and electronics industries.

Applications:

Screw compressors are widely used in various industries for a range of applications. They are commonly employed in manufacturing plants, refineries, power generation facilities, and other industrial settings to supply compressed air or gas for pneumatic tools, process equipment, air conditioning systems, and more. The ability of screw compressors to deliver a continuous flow of compressed air or gas makes them suitable for applications that require a steady and reliable source of compressed air.

Advantages:

Screw compressors offer several advantages compared to other types of compressors. They provide high efficiency and can deliver a large volume of compressed air or gas. The continuous compression process results in smooth operation with minimal pulsation. Additionally, screw compressors are known for their compact design, low vibration levels, and relatively quiet operation.

In summary, a screw compressor is a rotary positive displacement compressor that uses interlocking helical rotors to compress air or gas. It operates based on a continuous compression process and is available in both oil-injected and oil-free variants. Screw compressors find widespread use in various industries for applications that require a reliable source of compressed air or gas.

China wholesaler Hot Selling CHINAMFG for Fruit and Meat Preservation Storage   small air compressor China wholesaler Hot Selling CHINAMFG for Fruit and Meat Preservation Storage   small air compressor
editor by CX 2024-05-03

China Good quality Wholesale Hsn7461-70 CHINAMFG for Refrigeration Applications air compressor for sale

Product Description

COPELAND CHINAMFG for Refrigeration Applications

 

Product Description

TECHNICAL PARAMETERS

NOTE: Please contact us to help you with your selection and provide more technical information.

ABOUT US

ZHIYUN Refrigeration Equipment Co., Ltd. is a comprehensive enterprise integrating manufacturing, trade and engineering. Founded in 1982, we have 3 production plants (cold storage panel and door, refrigeration unit and heat exchange equipment), 1 sales company and 1 engineering company in ZheJiang Province. We have passed the ISO9001:2015 quality management system certification, SGS certification, the CRAA product certification of China’s refrigeration and air conditioning industry, and the capability level certification of China’s equipment maintenance and installation enterprises (Class C, II). Through 40 years’ efforts, we have developed into a professional refrigeration company with considerable scale, reputation and influence in China, serving CHINAMFG local enterprises. Good quality and reliable service help us gain credibility all over the world, and we have set up our dealers in Southeast Asia and Africa.

ZHIYUN offers wide range of high-quality products required for refrigeration system, which are widely used in many fields such as food market, marine, medicine, chemical industry, workshop, distribution center and logistics.

Products Range

  1. Compressor (official distributor of CHINAMFG brands)
  2. Condensing Unit (scroll, reciprocating and screw), Water Chiller
  3. Polyurethane Cold Storage Panel and Door
  4. Evaporator, Condenser
  5. Refrigeration Accessories (official distributor of CHINAMFG brands, including valves, refrigerant, refrigeration oil, tools, etc.)
  6. Refrigeration Electric Control System
  7. Quick Freezing Room and Quick-Freezing Tunnel

Service Range

  1. Cold Room Design
  2. Refrigeration System Design
  3. Undertake Cold Storage Projects in Nearby Countries
  4. Online Technical Support and After-Sale Service

Nonstandard customization and labeling production are highly welcomed.

Company Photos

Certificates

Exhibition

Packaging and Shipping

FAQ

1. Q: Are you a manufacturer?
    A: Yes, we are manufacturer. Non-standard customization and OEM service are both welcomed and available.
2. Q: Can I get the warranty?
    A: Yes, under the condition that the user apply the equipment correctly, we provide 1 year quality warranty.
3. Q: How to buy?
    A: Please contact us by email or online at first, and then we will offer our proposal and quotation based on your demand.
4. Q: How to pay?
    A: 30% of total amount to be paid before production, and the balance payment before shipment.
5. Q: How to ship?
    A: We work with experienced shipping agent who could arrange your delivery on the cheapest and fastest way. Our closest port is HangZhou.
6. Q: What about the delivery date?
    A: 10-30 days, depends on the order.
7. Q: What about the maintenance?
    A: All the products are tested before shipment, and maintenance is easy. We provide patient pre-sale service and considerate after-sale service.

OUR ADVANTAGES

1. More than 40 years of professional refrigeration industry experience, understand the cold storage, understand the cold storage equipment, understand the customer needs even better.
2. Our own cold storage PU panel factory, refrigeration equipment factory and evaporator factory, complete product line, guaranteed quality, convenient one-stop purchase.
3. Considerate after-sales service, on-site debugging and installation are avaible.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Available
Warranty: 12-Month
Lubrication Style: Lubricated
Cooling System: All Available
Power Source: AC Power
Cylinder Position: Vertical
Customization:
Available

|

air compressor

How Does Variable Speed Control Work in Screw Compressors?

Variable speed control in screw compressors is a technology that allows the compressor’s rotational speed to be adjusted according to the compressed air or gas demand. This control method offers several benefits in terms of energy efficiency and system performance. Here’s a detailed explanation:

Variable speed control, also known as variable frequency drive (VFD) or inverter control, works by adjusting the speed of the compressor’s drive motor. The drive motor is typically an electric motor that powers the rotation of the compressor’s screw rotors.

The key components and operation of variable speed control in screw compressors are as follows:

  • 1. Drive Motor: The drive motor is connected to the compressor’s screw rotors and provides the rotational power required for compression. It is an electric motor capable of operating at variable speeds.
  • 2. Inverter or Variable Frequency Drive (VFD): The inverter or VFD is an electronic device that controls the speed of the drive motor. It converts the incoming electrical power into adjustable frequency and voltage, allowing precise control of the motor’s rotational speed.
  • 3. Control System: The control system of the screw compressor monitors and adjusts the speed of the drive motor based on the compressed air or gas demand. It receives input signals from sensors that measure parameters such as pressure, flow rate, or system demand, and sends corresponding signals to the inverter or VFD to regulate the motor speed.
  • 4. Speed Adjustment: When the demand for compressed air or gas decreases, the control system reduces the motor speed by decreasing the frequency and voltage supplied by the inverter or VFD. This results in a lower rotational speed of the screw rotors, reducing the compression capacity and power consumption of the compressor.
  • 5. Energy Efficiency: Variable speed control allows the compressor to match the output to the actual demand, avoiding energy wastage associated with constant-speed compressors. By operating at lower speeds during periods of lower demand, energy consumption can be significantly reduced. This energy-saving capability is particularly advantageous in applications with varying air or gas requirements.
  • 6. Smooth Operation: Variable speed control enables smooth and gradual motor acceleration and deceleration, minimizing mechanical stress on the compressor components and reducing the likelihood of sudden pressure surges or system shutdowns.
  • 7. System Stability: By adjusting the compressor’s speed to match the demand, variable speed control helps maintain stable system pressure and prevents excessive cycling of the compressor. This contributes to improved system performance and longevity.

It’s worth noting that variable speed control is more commonly found in larger screw compressors used in industrial and commercial applications. Smaller screw compressors may utilize fixed-speed motors due to cost considerations or simpler system requirements.

Overall, variable speed control in screw compressors offers precise capacity modulation, improved energy efficiency, enhanced system stability, and reduced maintenance requirements, making it a preferred choice in many applications where compressed air or gas demand fluctuates.

air compressor

Can Screw Compressors Be Used for Medical Air Supply?

Yes, screw compressors can be used for medical air supply. Here’s a detailed explanation:

Screw compressors are commonly employed in various applications, including medical air supply systems. Medical air is a critical utility in healthcare facilities, used for various purposes such as respiratory therapy, anesthesia, and surgical tools. Here are some key points to consider:

1. Reliability and Efficiency:

Screw compressors are known for their reliability and efficiency. They can provide a continuous and reliable source of compressed air, ensuring a stable supply for medical applications. The rotary screw design allows for smooth and efficient compression, minimizing energy consumption and maximizing system performance.

2. Oil-Free Operation:

In medical applications, it is crucial to ensure the purity of the compressed air. Screw compressors can be designed and certified to provide oil-free air, eliminating the risk of oil contamination in the medical air supply. Oil-free screw compressors incorporate specialized sealing systems and filtration to prevent oil carryover, making them suitable for medical air applications.

3. Air Quality Standards:

Medical air must meet specific air quality standards to ensure patient safety and treatment effectiveness. Standards such as the European Pharmacopoeia (Ph. Eur.) or the United States Pharmacopeia (USP) define the required purity levels for medical air, including limits on particulate matter, moisture content, and microbial contamination. Screw compressors can be equipped with appropriate filtration and purification systems to meet these standards.

4. Integrated Drying and Filtration:

Some screw compressors designed for medical air applications incorporate integrated drying and filtration systems. These systems remove moisture and contaminants from the compressed air, ensuring it meets the required quality standards. Integrated drying systems can include refrigerated dryers, desiccant dryers, or membrane dryers, depending on the specific needs of the medical air supply system.

5. Redundancy and Backup Systems:

Medical air supply systems often require a high level of reliability and continuity. Screw compressors can be configured with redundancy and backup systems to ensure uninterrupted supply. Multiple compressors can be installed in parallel, with automatic switching mechanisms to maintain supply in case of a compressor failure or maintenance activities.

6. Monitoring and Alarms:

Modern screw compressors used in medical air supply systems often feature advanced monitoring capabilities. They can continuously monitor and record key parameters such as pressure, temperature, and system performance. Alarms and alerts can be configured to notify operators or maintenance personnel in case of abnormal conditions or potential issues with the compressor.

7. Compliance with Standards and Regulations:

When using screw compressors for medical air supply, it is essential to comply with relevant standards and regulations. These may include medical device regulations, electrical safety standards, and guidelines specific to medical gas systems. Compliance ensures that the medical air supply system meets the necessary safety and quality requirements.

In summary, screw compressors can be used for medical air supply, providing reliable and efficient compressed air for various medical applications. With their reliability, oil-free operation, adherence to air quality standards, integrated drying and filtration capabilities, and the ability to incorporate redundancy and monitoring features, screw compressors are well-suited for medical air supply systems in healthcare facilities.

air compressor

Are There Different Types of Screw Compressors?

Yes, there are different types of screw compressors available, catering to various application requirements. Here’s an overview of the main types:

1. Oil-Injected Screw Compressors:

Oil-injected screw compressors, also known as lubricated screw compressors, are the most common type. These compressors require the injection of a small amount of lubricating oil into the compression chamber. The oil serves multiple purposes, including lubrication, cooling, sealing, and reducing friction between the rotors. Oil-injected screw compressors are widely used in industrial applications where a small amount of oil in the compressed air is acceptable.

2. Oil-Free Screw Compressors:

Oil-free screw compressors are designed to operate without the need for oil lubrication. These compressors incorporate specialized rotor coatings, such as PTFE (polytetrafluoroethylene) or other non-stick materials, to reduce friction and eliminate the need for oil. Oil-free screw compressors are preferred in applications that require oil-free and contaminant-free compressed air. Industries like food and beverage, pharmaceuticals, electronics, and others often rely on oil-free screw compressors to ensure the purity of the compressed air.

3. Variable Speed Drive (VSD) Screw Compressors:

VSD screw compressors, also known as variable frequency drive (VFD) screw compressors, are equipped with a variable speed drive system. This system allows the compressor to adjust the rotational speed of the motor and, consequently, the speed of the screw rotors. By varying the speed, VSD screw compressors can closely match the compressed air or gas demand, resulting in energy savings and improved efficiency. VSD screw compressors are particularly beneficial in applications with varying air demand, as they can adapt their output accordingly.

4. Two-Stage Screw Compressors:

Two-stage screw compressors consist of two sets of rotors arranged in series. The first stage compresses the air or gas to an intermediate pressure, and the second stage further compresses it to the desired final pressure. Two-stage screw compressors are commonly used in applications that require higher discharge pressures. By dividing the compression into two stages, these compressors can achieve higher efficiency and improved performance in high-pressure applications.

5. Water-Injected Screw Compressors:

Water-injected screw compressors, also known as liquid-injected screw compressors, utilize water or a water-glycol mixture as a sealing and cooling medium. The water injection helps in sealing the compression chamber and reduces the discharge temperature, enhancing the compressor’s efficiency. Water-injected screw compressors are often used in applications where oil contamination is a concern, such as in the pharmaceutical and food processing industries.

Each type of screw compressor has its own advantages and is suitable for specific applications. The choice of the screw compressor type depends on factors such as the desired level of air purity, the need for oil-free operation, energy efficiency requirements, and the operating conditions of the application.

China Good quality Wholesale Hsn7461-70 CHINAMFG for Refrigeration Applications   air compressor for saleChina Good quality Wholesale Hsn7461-70 CHINAMFG for Refrigeration Applications   air compressor for sale
editor by CX 2024-05-03

China high quality Customized Industrial CO2 Helium Argon Gas Oil Free Diaphragm Compressor Manufacturer air compressor portable

Product Description

 

Reciprocating Completely Oil-Free Diaphragm Compressor
( Blue Font To View Hyperlink)

 

Our company specialize in producing various kinds of compressor products, such as:Diaphragm compressor,Piston compressor, Air compressors,Nitrogen generator,Oxygen generator ,Gas cylinder,etc. All products can be customized according to your parameters and other requirements.

Process Principle
Diaphragm compressor according to the needs of the user, choose the right type of compressor to meet the needs of the user. The diaphragm of the metal diaphragm compressor completely separates the gas from the hydraulic oil system to ensure the purity of the gas and no pollution to the gas. At the same time, advanced manufacturing technology and accurate membrane cavity design technology are adopted to ensure the service life of the diaphragm compressor diaphragm. No pollution: the metal diaphragm group completely separates the process gas from the hydraulic oil and lubricating oil parts to ensure the gas purity.
Main Structure
Diaphragm compressor structure is mainly composed of motor, base, crankcase, crankshaft linkage mechanism, cylinder components, crankshaft connecting rod, piston, oil and gas pipeline, electric control system and some accessories.
Gas Media 
Our compressors can compress ammonia, propylene, nitrogen, oxygen, helium, hydrogen, hydrogen chloride, argon, hydrogen chloride, hydrogen sulfide, hydrogen bromide, ethylene, acetylene, etc.(Nitrogen diaphragm compressor,bottle filling compressor,oxygen diaphragm compressor)
GD Model Instruction
GD diaphragm compressor is a special structure of the volumetric compressor, is the highest level of compression in the field of gas compression, this compression method Without secondary pollution, it can ensure the purity of gas is more than 5, and it has very good protection against compressed gas. It has the characteristics of large compression ratio, good sealing performance, and the compressed gas is not polluted by lubricating oil and other CHINAMFG impurities. Therefore, it is suitable for compressing high-purity, rare and precious, flammable, explosive, toxic, harmful, corrosive and high-pressure gases. The compression method is generally specified in the world for compressing high-purity gas, flammable and explosive gas, toxic gas and oxygen. Etc. (such as nitrogen diaphragm compressor, oxygen diaphragm compressor, hydrogen sulfide diaphragm compressor, argon diaphragm compressor, etc.).
GD diaphragm compressor for my company independent research and development of large diaphragm compressor, its advantages are: high compression ratio, large displacement, large piston force, stable running, high exhaust pressure, etc, has been widely used and petroleum chemical industry and nuclear power plant, and so on,.Two GD type diaphragm compressor cylinder arrangement for symmetrically arranged in parallel, more suitable for the petrochemical and nuclear power plant such as uninterrupted operation for a long time, because of the cylinder body symmetry, run up against other arrangement of diaphragm compressor is the most stable operation, running, small vibration from the ground clearance is more convenient in maintenance.
Advantages
1.Good sealing performance
Diaphragm compressor is a kind of special structure displacement compressor.The gas does not need lubrication,the sealing performance is good,the compression medium does not contact with any lubricant,and there will be no pollution in the compression process.It is especially suitable for high purity(99.9999%),rate,extremely corrosive,toxic and harmful,inflammable and explosive.Compression,transportation and bottle filling of radioactive gases.Membrane head is sealed with inlaid double O-ring,and its sealing effect is far better than that of open type.
2.Cylinder has good heat dissipation performance
The working cylinder of diaphragm compressor has good heat dissipation performance and is close to isothermal compression.It can adopt higher compression ratio and is suitable for compressing high-pressure gas.
3.Compressor speed is low and service life of vulnerable parts is prolonged.The new type of diaphragm cavity curve improve the volume efficiency of the compressor,optimize the value type,and adopt special heat treatment method for diaphragm,which greatly improves the service life of the compressor.
4.The high efficiency cooler is adopted,which makes the whole machine low in temperature and high in efficiency.The service life of lubricating oil,O-ring and value spring can be prolonged appropriately .Under the condition of meeting the buyer’s technological parameters,the structure is more advanced,reasonable and energy-saving.
5.The diaphragm rupture alarm structure is advanced,reasonable and reliable.The diaphragm installation has no directionality and is easy to replace.
6.The parts and components of the whole equipment are concentrated on a skid-mounted chassis,which is convenient for transportation,installation and management.

Reference Operating Parameter:

Model GD-120/4-80 Remarks
Volume Flow Nm3/h 120 No-Standard
Working pressure Suction pressure: 0.4MPa No-Standard
  Exhaust pressure: 8.0MPa No-Standard
Cooling Method    Water-Cooled  No-Standard
Intake temperature °C 0~30  
Inlet pressure MPa 0.3~0.4  
Discharge temperature °C ≤45ºC  
Noise dB(A) ≤80  
Power/Frequence V/Hz 380/50 No-Standard
Motor Power Kw 22KW~200KW No-Standard
Crankshaft speed r/min 420  
Overall dimension L/mm 3000  
  W/mm 1600  
  H/mm 1400  

Reference Specification

1 GD-120/4-80 3.0 120 0.4 8.0 3000x1600x1400   30
2 GD-130/0.98-11 3.0 130 0.098 1.1 3000x1800x1600 4.0 30
3 GD-150/2-20 3.0 150 0.2 2.0 3000x1800x1600 4.0 37
4 GD-100/0.1-5 4.0 100 0.01 0.5 2800X1500X1500 3.0 18.5
5 GD-100/5.5-200 5.0 100 0.55 20 3200X2000X1600 4.5 45
6 GD-80/0.12-4 5.0 80 0.012 0.4 2800x1600x 1500 3.8 15
7 GD-60/0.3-6 4.0 60 0.03 0.6 2800x1600x1500 4.0 15
8 GD-70/0.1-8 3.8 70 0.01 0.8 3000 x 1600×1250 5.0 18.5
9 GD-40/0.02-160 5.0 40 0.02 16 2800x1460x1530 3.0 22
10 GD-100/0.5-6 2.0 100 0.05 0.6 3000x2000x1560 6.0 18.5
11 GD-36/1-150 4.0 36 0.1 15 3000x1500x1500 4.0 45
12 GD-35/0.7-300 4.0 35 0.07 30 3000x1600x1500 4.0 22
13 GD-500/15-35 4.5 500 1.5 3.5 3000x2000x1700 4.0 45
14 GD-150/15-210 4.5 150 1.5 21 3200x1700x1600 4.0 45
15 GD-120/8-220 4.5 120 0.8 22 3200x1700x1600 3.8 45
16 GD-100/9 4.5 100 0.0 0.9 3200x1700x1800 4.5 22
17 GD-100/1.5-150 4.5 100 0.15 15 3200x1700x1800 4.5 45
18 GD-40/30 4.5 40 0.0 3.0 3200x1700x1800 4.0 18.5

 

 

 

 

 

 

 

 

 

 

 

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Warranty: 18month
Structure Type: D Type
Piston Travel: 130-210mm
Max.Piston Force: 40kn-160kn
Max.Discharge Pressure: 100MPa
Flow-Rate Range: 30-2000nm3/H
Customization:
Available

|

air compressor

Can Gas Air Compressors Be Used in Construction Projects?

Gas air compressors are widely used in construction projects due to their portability, versatility, and ability to provide the necessary compressed air for various applications. They are an essential tool in the construction industry, enabling the efficient and effective operation of pneumatic tools and equipment. Here’s a detailed explanation of how gas air compressors are used in construction projects:

1. Powering Pneumatic Tools:

Gas air compressors are commonly used to power a wide range of pneumatic tools on construction sites. These tools include jackhammers, nail guns, impact wrenches, concrete breakers, air drills, sanders, grinders, and paint sprayers. The compressed air generated by the gas air compressor provides the necessary force and power for efficient operation of these tools, enabling tasks such as concrete demolition, fastening, surface preparation, and finishing.

2. Air Blow and Cleaning Operations:

In construction projects, there is often a need to clean debris, dust, and dirt from work areas, equipment, and surfaces. Gas air compressors are used to generate high-pressure air for air blow and cleaning operations. This helps maintain cleanliness, remove loose materials, and prepare surfaces for further work, such as painting or coating.

3. Operating Pneumatic Systems:

Gas air compressors are employed to operate various pneumatic systems in construction projects. These systems include pneumatic control devices, pneumatic cylinders, and pneumatic actuators. Compressed air from the gas air compressor is used to control the movement of equipment, such as gates, doors, and barriers, as well as to operate pneumatic lifts, hoists, and other lifting mechanisms.

4. Concrete Spraying and Shotcreting:

Gas air compressors are utilized in concrete spraying and shotcreting applications. Compressed air is used to propel the concrete mixture through a nozzle at high velocity, ensuring proper adhesion and distribution on surfaces. This technique is commonly employed in applications such as tunnel construction, slope stabilization, and repair of concrete structures.

5. Sandblasting and Surface Preparation:

In construction projects that require surface preparation, such as removing old paint, rust, or coatings, gas air compressors are often used in conjunction with sandblasting equipment. Compressed air powers the sandblasting process, propelling abrasive materials such as sand or grit onto the surface to achieve effective cleaning and preparation before applying new coatings or finishes.

6. Tire Inflation and Equipment Maintenance:

Gas air compressors are utilized for tire inflation and equipment maintenance on construction sites. They provide compressed air for inflating and maintaining proper tire pressure in construction vehicles and equipment. Additionally, gas air compressors are used for general equipment maintenance, such as cleaning, lubrication, and powering pneumatic tools for repair and maintenance tasks.

7. Portable and Remote Operations:

Gas air compressors are particularly beneficial in construction projects where electricity may not be readily available or feasible. Portable gas air compressors provide the flexibility to operate in remote locations, allowing construction crews to utilize pneumatic tools and equipment without relying on a fixed power source.

Gas air compressors are an integral part of construction projects, facilitating a wide range of tasks and enhancing productivity. Their ability to power pneumatic tools, operate pneumatic systems, and provide compressed air for various applications makes them essential equipment in the construction industry.

air compressor

Can Gas Air Compressors Be Used for Gas Line Maintenance?

Gas air compressors can be used for certain aspects of gas line maintenance, primarily for tasks that require compressed air. Here’s a detailed explanation:

1. Clearing Debris and Cleaning:

Gas air compressors can be utilized to clear debris and clean gas lines. Compressed air can be directed through the gas lines to dislodge and remove dirt, dust, rust particles, or other contaminants that may accumulate over time. This helps maintain the integrity and efficiency of the gas lines.

2. Pressure Testing:

Gas line maintenance often involves pressure testing to ensure the lines can withstand the required operating pressures. Gas air compressors can provide the necessary compressed air to pressurize the lines for testing purposes. By pressurizing the gas lines with compressed air, technicians can identify any leaks or weaknesses in the system.

3. Leak Detection:

Gas air compressors can also be used in conjunction with appropriate leak detection equipment to identify and locate gas leaks in the gas lines. Compressed air can be introduced into the lines, and the detection equipment can then identify any areas where the compressed air escapes, indicating a potential gas leak.

4. Valve and Equipment Maintenance:

Gas line maintenance may involve the inspection, maintenance, or replacement of valves and associated equipment. Compressed air can be used to clean and blow out debris from valves, purge lines, or assist in the disassembly and reassembly of components.

5. Pipe Drying:

Gas air compressors can aid in drying gas lines after maintenance or repairs. By blowing compressed air through the lines, any residual moisture can be removed, ensuring the gas lines are dry before being put back into service.

6. Precautions and Regulations:

When using gas air compressors for gas line maintenance, it is essential to follow safety precautions and adhere to relevant regulations. Gas line maintenance often involves working in hazardous environments, and proper training, equipment, and procedures must be followed to ensure the safety of personnel and the integrity of the gas system.

It is important to note that gas air compressors should not be used directly for pressurizing or transporting natural gas or other combustible gases. Gas line maintenance tasks involving gas air compressors primarily focus on using compressed air for specific maintenance and testing purposes, as outlined above.

In summary, gas air compressors can be useful for certain aspects of gas line maintenance, including clearing debris, pressure testing, leak detection, valve and equipment maintenance, and pipe drying. However, it is crucial to follow safety guidelines and regulations when working with gas lines and compressed air to ensure the safety and integrity of the gas system.

air compressor

What Safety Precautions Should Be Taken When Operating Gas Air Compressors?

Operating gas air compressors safely is essential to prevent accidents, injuries, and equipment damage. It’s important to follow proper safety precautions to ensure a safe working environment. Here’s a detailed explanation of the safety precautions that should be taken when operating gas air compressors:

1. Read and Follow the Manufacturer’s Instructions:

Before operating a gas air compressor, carefully read and understand the manufacturer’s instructions, user manual, and safety guidelines. Follow the recommended procedures, maintenance schedules, and any specific instructions provided by the manufacturer.

2. Provide Adequate Ventilation:

Gas air compressors generate exhaust fumes and heat during operation. Ensure that the operating area is well-ventilated to prevent the accumulation of exhaust gases, which can be harmful or even fatal in high concentrations. If operating indoors, use ventilation systems or open windows and doors to allow fresh air circulation.

3. Wear Personal Protective Equipment (PPE):

Wear appropriate personal protective equipment (PPE) when operating a gas air compressor. This may include safety glasses, hearing protection, gloves, and sturdy footwear. PPE helps protect against potential hazards such as flying debris, noise exposure, and hand injuries.

4. Perform Regular Maintenance:

Maintain the gas air compressor according to the manufacturer’s recommendations. Regularly inspect the compressor for any signs of wear, damage, or leaks. Keep the compressor clean and free from debris. Replace worn-out parts and components as needed to ensure safe and efficient operation.

5. Preventive Measures for Fuel Handling:

If the gas air compressor is powered by fuels such as gasoline, diesel, or propane, take appropriate precautions for fuel handling:

  • Store fuel in approved containers and in well-ventilated areas away from ignition sources.
  • Refuel the compressor in a well-ventilated outdoor area, following proper refueling procedures and avoiding spills.
  • Handle fuel with caution, ensuring that there are no fuel leaks or spills near the compressor.
  • Never smoke or use open flames near the compressor or fuel storage areas.

6. Use Proper Electrical Connections:

If the gas air compressor requires electrical power, follow these electrical safety precautions:

  • Ensure that the electrical connections and wiring are properly grounded and in compliance with local electrical codes.
  • Avoid using extension cords unless recommended by the manufacturer.
  • Inspect electrical cords and plugs for damage before use.
  • Do not overload electrical circuits or use improper voltage sources.

7. Secure the Compressor:

Ensure that the gas air compressor is securely positioned and stable during operation. Use appropriate mounting or anchoring methods, especially for portable compressors. This helps prevent tipping, vibrations, and movement that could lead to accidents or injuries.

8. Familiarize Yourself with Emergency Procedures:

Be familiar with emergency procedures and know how to shut off the compressor quickly in case of an emergency or malfunction. Have fire extinguishers readily available and know how to use them effectively. Develop an emergency action plan and communicate it to all personnel working with or around the compressor.

It’s crucial to prioritize safety when operating gas air compressors. By following these safety precautions and using common sense, you can minimize the risks associated with compressor operation and create a safer work environment for yourself and others.

China high quality Customized Industrial CO2 Helium Argon Gas Oil Free Diaphragm Compressor Manufacturer   air compressor portableChina high quality Customized Industrial CO2 Helium Argon Gas Oil Free Diaphragm Compressor Manufacturer   air compressor portable
editor by CX 2024-05-03

China best CHINAMFG Air Compressor C47ab-C47ab001+C Hight Quality Construction High Pressure Variable Frequency Screw Air Compressor mini air compressor

Product Description

CHINAMFG Air Compressor C47AB-C47AB001+C Hight Quality Construction High Pressure Variable Frequency Screw Air Compressor

Hongjun supply spare parts for

1.Whell loader,excavator,grader,roller,bulldozer
2.Truck crance
3.Mining truck
4.Concrete pump

Hongjun spare parts include

1.Engine spare parts(Cummins, ZheJiang diesel ,Caterpilla ,Komatsu)
2.Gearbox spare parts (ZF Advanced Fast)
3.Hydraulic spare parts(gear pump,valve,cylinder,pipe)
4.Electric spare parts(Sensor,Switch,lamp,deshboard,gauge)
….

Company Information

Hongjun Group(HK) Co.,ltd .start its business from 2571.We work mainly for heavy construction machinery and heavy truck duty truck!With its goal of”One-stop service for all your spare parts request!Keep your machine working!” .CHINAMFG established relationship with hundreds of excellent factories to ensure one-stopservice for our customers!

CHINAMFG works mainly for heavy construction machinery and heavy duty truck! With its rich experience in this field.CHINAMFG can supply all spare parts for the CHINAMFG brands such like Liugong, XGMA,SDLG,XCMG,LOVOL,Cummins,ZF, Shangchai, Diesel,Weichai, Sinotruk,Shananxi, FAW. 

All our sub-suppliers went through a rigorous process of selection to make sure high quality! CHINAMFG Group Co., Ltd. Makes sure all its sub-suppliers have qualifed necessary certificates like ISO9001, CCC, ce, ect.

We promise to customers, for the same quality products, the most competitive price will be provided and we insist on fast shipping to meet customers′ demand in shortest time!

We have been working in this field for nearly 20 years and has very high reputation in domestic China market and also in oversea market! Our spare parts have been exported to more than 20 countries in the world and keep thousands of machines working! We will be very happy to work with customers from all over the world!

Our Service

1.  Delivery time:

  • We put your order into our tight production schedule, keep our client informed about production process, ensure your punctual delivery time.
  • Shipping notice/ insurance to you as soon as your order is shipped.

2. After sales service:

  • After receive the goods, We accept ur feedback at first time.
  • We could provide installation guide, if you have need, we could give you global service.
  • Our Sales are 24-hours online for ur request

3. Professional service:

  • We value every inquiry sent to us, ensure quick competitive response.
  • We supply superior qualityand with competitve price.
  • We are a sales team, with all techinical support from engineer team.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Yes
Warranty: Standard
Type: Air Compressor
Application: Air Compressor
Certification: CE, ISO9001: 2000
Condition: New
Customization:
Available

|

air compressor

How Does Variable Speed Control Work in Screw Compressors?

Variable speed control in screw compressors is a technology that allows the compressor’s rotational speed to be adjusted according to the compressed air or gas demand. This control method offers several benefits in terms of energy efficiency and system performance. Here’s a detailed explanation:

Variable speed control, also known as variable frequency drive (VFD) or inverter control, works by adjusting the speed of the compressor’s drive motor. The drive motor is typically an electric motor that powers the rotation of the compressor’s screw rotors.

The key components and operation of variable speed control in screw compressors are as follows:

  • 1. Drive Motor: The drive motor is connected to the compressor’s screw rotors and provides the rotational power required for compression. It is an electric motor capable of operating at variable speeds.
  • 2. Inverter or Variable Frequency Drive (VFD): The inverter or VFD is an electronic device that controls the speed of the drive motor. It converts the incoming electrical power into adjustable frequency and voltage, allowing precise control of the motor’s rotational speed.
  • 3. Control System: The control system of the screw compressor monitors and adjusts the speed of the drive motor based on the compressed air or gas demand. It receives input signals from sensors that measure parameters such as pressure, flow rate, or system demand, and sends corresponding signals to the inverter or VFD to regulate the motor speed.
  • 4. Speed Adjustment: When the demand for compressed air or gas decreases, the control system reduces the motor speed by decreasing the frequency and voltage supplied by the inverter or VFD. This results in a lower rotational speed of the screw rotors, reducing the compression capacity and power consumption of the compressor.
  • 5. Energy Efficiency: Variable speed control allows the compressor to match the output to the actual demand, avoiding energy wastage associated with constant-speed compressors. By operating at lower speeds during periods of lower demand, energy consumption can be significantly reduced. This energy-saving capability is particularly advantageous in applications with varying air or gas requirements.
  • 6. Smooth Operation: Variable speed control enables smooth and gradual motor acceleration and deceleration, minimizing mechanical stress on the compressor components and reducing the likelihood of sudden pressure surges or system shutdowns.
  • 7. System Stability: By adjusting the compressor’s speed to match the demand, variable speed control helps maintain stable system pressure and prevents excessive cycling of the compressor. This contributes to improved system performance and longevity.

It’s worth noting that variable speed control is more commonly found in larger screw compressors used in industrial and commercial applications. Smaller screw compressors may utilize fixed-speed motors due to cost considerations or simpler system requirements.

Overall, variable speed control in screw compressors offers precise capacity modulation, improved energy efficiency, enhanced system stability, and reduced maintenance requirements, making it a preferred choice in many applications where compressed air or gas demand fluctuates.

air compressor

What Is the Role of Control Systems in Screw Compressor Operation?

Control systems play a crucial role in the operation of screw compressors. Here’s a detailed explanation:

Screw compressors are complex machines that require precise control and monitoring for optimal performance and efficiency. Control systems provide the necessary intelligence and automation to regulate various aspects of screw compressor operation. Here are the key roles of control systems:

1. Start-up and Shutdown Control:

Control systems manage the start-up and shutdown sequences of screw compressors. During start-up, the control system ensures a gradual ramp-up of motor speed and system pressure to prevent sudden surges and excessive wear on components. During shutdown, it safely brings the compressor to a stop and performs necessary cooling and ventilation processes.

2. Load and Unload Control:

Screw compressors often feature load and unload operation to match compressed air supply with demand. The control system monitors system pressure, flow requirements, and other parameters to determine when to load or unload the compressor. It engages or disengages the compressor’s capacity control mechanism, such as inlet modulation valves or variable-speed drives, to maintain optimal operation at varying loads.

3. Pressure Control:

Control systems regulate the discharge pressure of screw compressors. They continuously monitor the system pressure and adjust compressor operation to maintain the desired pressure setpoint. The control system modulates the compressor’s capacity, adjusts the speed of the drive motor, or controls the opening and closing of inlet or discharge valves to achieve the target pressure.

4. Temperature Control:

Control systems monitor and control various temperature parameters within the screw compressor system. They ensure that the compressor operates within safe temperature limits by monitoring coolant temperatures, lubricant temperatures, and interstage or discharge temperatures. If temperature limits are exceeded, the control system may activate cooling mechanisms, adjust operating parameters, or trigger alarms and shutdowns to prevent damage.

5. Monitoring and Protection:

Control systems provide comprehensive monitoring and protection functions for screw compressors. They continuously collect data from various sensors and instruments, such as pressure sensors, temperature sensors, vibration sensors, and current sensors. The control system analyzes this data to detect abnormalities, malfunctions, or potential failures. It can initiate alarms, shutdowns, or safety interlocks to protect the compressor and associated equipment.

6. Energy Management:

Control systems optimize energy efficiency in screw compressor operation. They analyze system demand, performance characteristics, and energy consumption to make intelligent decisions regarding load modulation, capacity control, and motor speed adjustments. By optimizing the compressor’s operation, the control system helps reduce energy consumption, operating costs, and environmental impact.

7. Remote Monitoring and Control:

Modern control systems often offer remote monitoring and control capabilities. They can be integrated into supervisory control and data acquisition (SCADA) systems or connected to networked platforms. Remote access allows operators to monitor compressor performance, adjust operating parameters, receive alarms, and perform diagnostics from a central control room or via mobile devices.

In summary, control systems play a vital role in the operation of screw compressors by providing intelligent control, monitoring, and protection. They manage start-up and shutdown sequences, regulate load and unload operation, control pressure and temperature, monitor system parameters, optimize energy efficiency, and enable remote monitoring and control. By effectively managing the compressor’s operation, control systems contribute to reliable performance, energy efficiency, and overall system optimization.

air compressor

What Is a Screw Compressor?

A screw compressor is a type of positive displacement compressor that operates based on the principle of rotary motion. Here’s a detailed explanation:

Working Principle:

A screw compressor consists of two helical rotors, typically called male and female rotors, that rotate in opposite directions within a housing. The rotors have specially designed profiles that interlock with each other, creating a series of compression chambers as they rotate. As the rotors rotate, the volume of these chambers decreases, compressing the air or gas trapped inside.

Compression Process:

As the air or gas enters the screw compressor, it gets trapped between the rotors’ lobes or threads. As the rotors continue to rotate, the trapped air or gas is carried along the length of the rotors and gradually compressed. The compression occurs continuously and smoothly as the air or gas moves from the suction side to the discharge side of the compressor. The interlocking rotors ensure a continuous flow of compressed air or gas without pulsation.

Oil-Injected and Oil-Free Variants:

Screw compressors are available in both oil-injected and oil-free variants. In oil-injected screw compressors, a small amount of lubricating oil is injected into the compression chamber to provide lubrication, cooling, and sealing between the rotors. The oil also helps in reducing friction and minimizing wear. Oil-injected screw compressors are commonly used in various industrial applications where a small amount of oil in the compressed air is acceptable.

On the other hand, oil-free screw compressors are designed to operate without the need for oil lubrication. These compressors use specialized rotor coatings, such as PTFE (polytetrafluoroethylene) or other non-stick materials, to reduce friction and prevent the need for oil. Oil-free screw compressors are often favored in applications where oil-free and contaminant-free compressed air is essential, such as in food and beverage, pharmaceutical, and electronics industries.

Applications:

Screw compressors are widely used in various industries for a range of applications. They are commonly employed in manufacturing plants, refineries, power generation facilities, and other industrial settings to supply compressed air or gas for pneumatic tools, process equipment, air conditioning systems, and more. The ability of screw compressors to deliver a continuous flow of compressed air or gas makes them suitable for applications that require a steady and reliable source of compressed air.

Advantages:

Screw compressors offer several advantages compared to other types of compressors. They provide high efficiency and can deliver a large volume of compressed air or gas. The continuous compression process results in smooth operation with minimal pulsation. Additionally, screw compressors are known for their compact design, low vibration levels, and relatively quiet operation.

In summary, a screw compressor is a rotary positive displacement compressor that uses interlocking helical rotors to compress air or gas. It operates based on a continuous compression process and is available in both oil-injected and oil-free variants. Screw compressors find widespread use in various industries for applications that require a reliable source of compressed air or gas.

China best CHINAMFG Air Compressor C47ab-C47ab001+C Hight Quality Construction High Pressure Variable Frequency Screw Air Compressor   mini air compressorChina best CHINAMFG Air Compressor C47ab-C47ab001+C Hight Quality Construction High Pressure Variable Frequency Screw Air Compressor   mini air compressor
editor by CX 2024-05-03

China Standard Screw Air Compressor Strength Manufacturers 7.5kw 220V Frequency Conversion Controller Can Be Customized air compressor for car

Product Description

Product Parameters

 

Technical parameters of fixed screw air compressor

Model No Power Noise Exhaust oil content Cooling method External dimensions weight(kg) Mpa
10A 7.5kw 66+2db ≤3ppm forced air cooling 850×650×800 190 0.8/1.0/1.3/1.6
20A 15kw 68+2db 1050×700×1000 300 0.8/1.0/1.3/1.6
30A 22kw 69+2db 1250×850×1100 450 0.8/1.0/1.3/1.6
50A 37kw 70+2db 1250×950×1200 650 0.8/1.0/1.3/1.6
60A 45kw 72+2db 1340×1000×1250 850 0.8/1.0/1.3/1.6
75A 55kw 73+2db 1340×1000×1250 1150 0.8/1.0/1.3/1.6
100A 75kw 75+2db 1340×1000×1250 1355 0.8/1.0/1.3/1.6
125A 90kw 75+2db 2085×1195×1500 1545 0.8/1.0/1.3/1.6
150A 110kw 75+2db 2430×1440×1760 1850 0.8/1.0/1.3/1.6
175A 132kw 75+2db 2430×1440×1760 1950 0.8/1.0/1.3/1.6

 

Product Description

Certifications

Installation Instructions

Company Profile

 HangZhou Xihu (West Lake) Dis. Mechanical Group Co., Ltd. was established in 2011 and is located in HangZhou, ZheJiang , the logistics capital of China. It is a key enterprise specializing in welding and cutting equipment, seamless steel cylinders, and carbon dioxide fire extinguishers and pressure reducers. Our main products include over 10 series and over 100 varieties of seamless gas cylinders, welded steel cylinders 2KG-24KG CO2 fire extinguisher cylinder valves, high-pressure valves, gas pipeline valves, gas pressure reducer check valves, various types of valves for gas cylinders, welding and cutting equipment for electric welding machines, gas detection equipment for seamless steel cylinders, etc., widely used in industries such as chemical hospitals, metallurgy, water and electricity, coal, and mechanical processing.

    The company’s products have successively passed ISO9000 certification, CE certification, KGS certification, SNI certification, and BV certification. It has been awarded “Trustworthy Product in ZheJiang Province” and “Famous Brand Product in HangZhou City”. Quality first, honesty is the consistent service tenet of the company. “Innovation, refinement, truth and progress” is the goal that the company will always strive for. Our products have been exported to over 30 countries and regions including Africa, North America, the Middle East, and Southeast Asia, and are highly praised by domestic and foreign customers. Carefully produce every product and serve every customer with integrity.
    Customer satisfaction is the driving force for us in Xihu (West Lake) Dis. to continue moving forward!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: Factory Aftermarket
Warranty: First Year
Lubrication Style: Lubricated
Samples:
US$ 798.8/Piece
1 Piece(Min.Order)

|

Order Sample

Customized on request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What Is the Role of Oil in Lubricated Screw Compressors?

In lubricated screw compressors, oil plays a crucial role in ensuring optimal performance, reliability, and longevity of the compressor. Here’s a detailed explanation of the role of oil in lubricated screw compressors:

Lubrication: One of the primary functions of oil in screw compressors is to provide lubrication to the moving parts, particularly the screw rotors. The oil forms a thin film between the rotors and the compressor housing, reducing friction and wear. This lubrication minimizes mechanical losses and helps maintain efficient operation by reducing energy consumption.

Sealing: Oil also acts as a sealing medium in lubricated screw compressors. The oil film created between the rotors and the compressor housing helps create a seal, preventing air or gas leakage between the high-pressure and low-pressure sides of the compressor. This sealing action is crucial for maintaining the compressors’ efficiency and preventing losses in compression performance.

Cooling: Oil plays a vital role in cooling various components of the screw compressor. As the compressed air or gas is compressed, it generates heat. The oil absorbs a significant amount of this heat and carries it away from the compression chamber. The oil then circulates through the compressor’s oil cooling system, where it dissipates the heat to the surrounding environment or through an oil cooler. Efficient oil cooling helps prevent overheating of the compressor components, ensuring reliable operation and extending the compressor’s lifespan.

Cleaning: The oil in lubricated screw compressors acts as a cleaning agent. It carries away contaminants, such as dirt, dust, and metal particles, that may enter the compressor during operation. The oil passes through filters and separators, removing these impurities and preventing them from accumulating in the compressor’s internal components. Clean oil helps maintain the integrity of the compressor’s internal parts and reduces the risk of damage or malfunctions.

Sealing Element Lubrication: In some lubricated screw compressors, the oil also serves to lubricate the sealing elements, such as the shaft seals or labyrinth seals. Proper lubrication of these seals helps maintain their effectiveness in preventing oil leakage and maintaining the separation between the oil and the compressed air or gas.

Corrosion Protection: Oil in screw compressors often contains additives that provide corrosion protection to the internal components. These additives form a protective layer on the metal surfaces, preventing corrosion caused by moisture or contaminants present in the compressed air or gas. Corrosion prevention helps maintain the compressor’s performance, efficiency, and reliability over time.

It’s important to note that lubricated screw compressors require regular oil monitoring, oil analysis, and oil changes to ensure optimal performance. The oil level, quality, and viscosity should be regularly checked and maintained within the manufacturer’s recommended specifications.

In summary, oil in lubricated screw compressors serves crucial functions such as lubrication, sealing, cooling, cleaning, sealing element lubrication, and corrosion protection. These functions collectively contribute to the efficient and reliable operation of the compressor, extending its service life and minimizing maintenance requirements.

air compressor

Can Screw Compressors Be Used for Medical Air Supply?

Yes, screw compressors can be used for medical air supply. Here’s a detailed explanation:

Screw compressors are commonly employed in various applications, including medical air supply systems. Medical air is a critical utility in healthcare facilities, used for various purposes such as respiratory therapy, anesthesia, and surgical tools. Here are some key points to consider:

1. Reliability and Efficiency:

Screw compressors are known for their reliability and efficiency. They can provide a continuous and reliable source of compressed air, ensuring a stable supply for medical applications. The rotary screw design allows for smooth and efficient compression, minimizing energy consumption and maximizing system performance.

2. Oil-Free Operation:

In medical applications, it is crucial to ensure the purity of the compressed air. Screw compressors can be designed and certified to provide oil-free air, eliminating the risk of oil contamination in the medical air supply. Oil-free screw compressors incorporate specialized sealing systems and filtration to prevent oil carryover, making them suitable for medical air applications.

3. Air Quality Standards:

Medical air must meet specific air quality standards to ensure patient safety and treatment effectiveness. Standards such as the European Pharmacopoeia (Ph. Eur.) or the United States Pharmacopeia (USP) define the required purity levels for medical air, including limits on particulate matter, moisture content, and microbial contamination. Screw compressors can be equipped with appropriate filtration and purification systems to meet these standards.

4. Integrated Drying and Filtration:

Some screw compressors designed for medical air applications incorporate integrated drying and filtration systems. These systems remove moisture and contaminants from the compressed air, ensuring it meets the required quality standards. Integrated drying systems can include refrigerated dryers, desiccant dryers, or membrane dryers, depending on the specific needs of the medical air supply system.

5. Redundancy and Backup Systems:

Medical air supply systems often require a high level of reliability and continuity. Screw compressors can be configured with redundancy and backup systems to ensure uninterrupted supply. Multiple compressors can be installed in parallel, with automatic switching mechanisms to maintain supply in case of a compressor failure or maintenance activities.

6. Monitoring and Alarms:

Modern screw compressors used in medical air supply systems often feature advanced monitoring capabilities. They can continuously monitor and record key parameters such as pressure, temperature, and system performance. Alarms and alerts can be configured to notify operators or maintenance personnel in case of abnormal conditions or potential issues with the compressor.

7. Compliance with Standards and Regulations:

When using screw compressors for medical air supply, it is essential to comply with relevant standards and regulations. These may include medical device regulations, electrical safety standards, and guidelines specific to medical gas systems. Compliance ensures that the medical air supply system meets the necessary safety and quality requirements.

In summary, screw compressors can be used for medical air supply, providing reliable and efficient compressed air for various medical applications. With their reliability, oil-free operation, adherence to air quality standards, integrated drying and filtration capabilities, and the ability to incorporate redundancy and monitoring features, screw compressors are well-suited for medical air supply systems in healthcare facilities.

air compressor

What Is the Efficiency of Screw Compressors?

The efficiency of screw compressors can vary depending on various factors, including the design, operating conditions, and maintenance. Here’s a detailed explanation of the efficiency of screw compressors:

1. Isothermal Efficiency:

Isothermal efficiency refers to the ideal efficiency of a compressor operating under isothermal conditions. In reality, screw compressors experience temperature rise during compression, and therefore, they do not achieve isothermal efficiency. The compression process in screw compressors is considered to be relatively close to isothermal compared to other compressor types, such as reciprocating compressors. This is due to the continuous and smooth flow of air or gas through the compression chamber, which helps in minimizing temperature differences.

2. Adiabatic Efficiency:

Adiabatic efficiency refers to the actual efficiency of a compressor, taking into account the heat generated during compression. Screw compressors typically have higher adiabatic efficiency compared to reciprocating compressors. The helical design of the rotors and the presence of intermeshing lobes allow for efficient compression with minimal energy loss. The adiabatic efficiency of a screw compressor can be influenced by factors such as the compression ratio, rotational speed, and discharge pressure.

3. Overall Efficiency:

The overall efficiency of a screw compressor takes into account various factors, including mechanical losses, power consumption, and auxiliary power requirements. Mechanical losses can occur due to friction between the rotors, bearings, and other moving parts. Well-maintained screw compressors with properly lubricated components and well-aligned rotors can minimize mechanical losses and improve overall efficiency. Power consumption is another factor affecting efficiency, and it can vary depending on the size, design, and operating conditions of the compressor.

4. Energy Efficiency:

Energy efficiency is an important aspect of screw compressors. It relates to the ability of the compressor to convert electrical energy into compressed air with minimal energy waste. Energy-efficient screw compressors are designed to optimize the compression process, reduce power consumption, and maximize output for a given input. Variable Speed Drive (VSD) screw compressors, for example, can adjust the rotational speed to match the compressed air demand, resulting in improved energy efficiency and significant energy savings.

It’s important to note that the efficiency of screw compressors can vary depending on the specific model, design features, and operating conditions. Regular maintenance, including proper lubrication, cleaning, and component inspection, is crucial for maintaining high efficiency levels. Additionally, selecting the right size and type of screw compressor for the intended application is essential to achieve optimal efficiency and performance.

In summary, screw compressors are known for their relatively high efficiency compared to other compressor types. While they may not achieve perfect isothermal efficiency, their adiabatic efficiency, overall efficiency, and energy efficiency make them suitable for a wide range of industrial applications.

China Standard Screw Air Compressor Strength Manufacturers 7.5kw 220V Frequency Conversion Controller Can Be Customized   air compressor for carChina Standard Screw Air Compressor Strength Manufacturers 7.5kw 220V Frequency Conversion Controller Can Be Customized   air compressor for car
editor by CX 2024-05-03

China high quality Hydrogen Chloride Compressor Diaphragm Oxygen Helium H2 Co Compressor Booster Toxic and Harmful Gases air compressor for sale

Product Description

Reciprocating Completely Oil-Free Diaphragm Compressor
( Blue Font To View Hyperlink)

 

Our company specialize in producing various kinds of compressor products, such as:Diaphragm compressor,Piston compressor, Air compressors,Nitrogen generator,Oxygen generator ,Gas cylinder,etc. All products can be customized according to your parameters and other requirements.

Process Principle
Diaphragm compressor according to the needs of the user, choose the right type of compressor to meet the needs of the user. The diaphragm of the metal diaphragm compressor completely separates the gas from the hydraulic oil system to ensure the purity of the gas and no pollution to the gas. At the same time, advanced manufacturing technology and accurate membrane cavity design technology are adopted to ensure the service life of the diaphragm compressor diaphragm. No pollution: the metal diaphragm group completely separates the process gas from the hydraulic oil and lubricating oil parts to ensure the gas purity.

Main Structure
Diaphragm compressor structure is mainly composed of motor, base, crankcase, crankshaft linkage mechanism, cylinder components, crankshaft connecting rod, piston, oil and gas pipeline, electric control system and some accessories.
Gas Media 
Our compressors can compress ammonia, propylene, nitrogen, oxygen, helium, hydrogen, hydrogen chloride, argon, hydrogen chloride, hydrogen sulfide, hydrogen bromide, ethylene, acetylene, etc.(Nitrogen diaphragm compressor,bottle filling compressor,oxygen diaphragm compressor)

GD Model Instruction
GD diaphragm compressor is a special structure of the volumetric compressor, is the highest level of compression in the field of gas compression, this compression method Without secondary pollution, it can ensure the purity of gas is more than 5, and it has very good protection against compressed gas. It has the characteristics of large compression ratio, good sealing performance, and the compressed gas is not polluted by lubricating oil and other CHINAMFG impurities. Therefore, it is suitable for compressing high-purity, rare and precious, flammable, explosive, toxic, harmful, corrosive and high-pressure gases. The compression method is generally specified in the world for compressing high-purity gas, flammable and explosive gas, toxic gas and oxygen. Etc. (such as nitrogen diaphragm compressor, oxygen diaphragm compressor, hydrogen sulfide diaphragm compressor, argon diaphragm compressor, etc.).
GD diaphragm compressor for my company independent research and development of large diaphragm compressor, its advantages are: high compression ratio, large displacement, large piston force, stable running, high exhaust pressure, etc, has been widely used and petroleum chemical industry and nuclear power plant, and so on,.Two GD type diaphragm compressor cylinder arrangement for symmetrically arranged in parallel, more suitable for the petrochemical and nuclear power plant such as uninterrupted operation for a long time, because of the cylinder body symmetry, run up against other arrangement of diaphragm compressor is the most stable operation, running, small vibration from the ground clearance is more convenient in maintenance.

Advantages
1.Good sealing performance
Diaphragm compressor is a kind of special structure displacement compressor.The gas does not need lubrication,the sealing performance is good,the compression medium does not contact with any lubricant,and there will be no pollution in the compression process.It is especially suitable for high purity(99.9999%),rate,extremely corrosive,toxic and harmful,inflammable and explosive.Compression,transportation and bottle filling of radioactive gases.Membrane head is sealed with inlaid double O-ring,and its sealing effect is far better than that of open type.
2.Cylinder has good heat dissipation performance
The working cylinder of diaphragm compressor has good heat dissipation performance and is close to isothermal compression.It can adopt higher compression ratio and is suitable for compressing high-pressure gas.
3.Compressor speed is low and service life of vulnerable parts is prolonged.The new type of diaphragm cavity curve improve the volume efficiency of the compressor,optimize the value type,and adopt special heat treatment method for diaphragm,which greatly improves the service life of the compressor.
4.The high efficiency cooler is adopted,which makes the whole machine low in temperature and high in efficiency.The service life of lubricating oil,O-ring and value spring can be prolonged appropriately .Under the condition of meeting the buyer’s technological parameters,the structure is more advanced,reasonable and energy-saving.
5.The diaphragm rupture alarm structure is advanced,reasonable and reliable.The diaphragm installation has no directionality and is easy to replace.
6.The parts and components of the whole equipment are concentrated on a skid-mounted chassis,which is convenient for transportation,installation and management.

Reference Operating Parameter:

Model GD-120/4-80 Remarks
Volume Flow Nm3/h 120 No-Standard
Working pressure Suction pressure: 0.4MPa No-Standard
  Exhaust pressure: 8.0MPa No-Standard
Cooling Method    Water-Cooled  No-Standard
Intake temperature °C 0~30  
Inlet pressure MPa 0.3~0.4  
Discharge temperature °C ≤45ºC  
Noise dB(A) ≤80  
Power/Frequence V/Hz 380/50 No-Standard
Motor Power Kw 22KW~200KW No-Standard
Crankshaft speed r/min 420  
Overall dimension L/mm 3000  
  W/mm 1600  
  H/mm 1400  

Reference Specification

1 GD-120/4-80 3.0 120 0.4 8.0 3000x1600x1400   30
2 GD-130/0.98-11 3.0 130 0.098 1.1 3000x1800x1600 4.0 30
3 GD-150/2-20 3.0 150 0.2 2.0 3000x1800x1600 4.0 37
4 GD-100/0.1-5 4.0 100 0.01 0.5 2800X1500X1500 3.0 18.5
5 GD-100/5.5-200 5.0 100 0.55 20 3200X2000X1600 4.5 45
6 GD-80/0.12-4 5.0 80 0.012 0.4 2800x1600x 1500 3.8 15
7 GD-60/0.3-6 4.0 60 0.03 0.6 2800x1600x1500 4.0 15
8 GD-70/0.1-8 3.8 70 0.01 0.8 3000 x 1600×1250 5.0 18.5
9 GD-40/0.02-160 5.0 40 0.02 16 2800x1460x1530 3.0 22
10 GD-100/0.5-6 2.0 100 0.05 0.6 3000x2000x1560 6.0 18.5
11 GD-36/1-150 4.0 36 0.1 15 3000x1500x1500 4.0 45
12 GD-35/0.7-300 4.0 35 0.07 30 3000x1600x1500 4.0 22
13 GD-500/15-35 4.5 500 1.5 3.5 3000x2000x1700 4.0 45
14 GD-150/15-210 4.5 150 1.5 21 3200x1700x1600 4.0 45
15 GD-120/8-220 4.5 120 0.8 22 3200x1700x1600 3.8 45
16 GD-100/9 4.5 100 0.0 0.9 3200x1700x1800 4.5 22
17 GD-100/1.5-150 4.5 100 0.15 15 3200x1700x1800 4.5 45
18 GD-40/30 4.5 40 0.0 3.0 3200x1700x1800 4.0 18.5

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 7*24
Warranty: 18month
Principle: Diaphragm Compressor
Application: High Back Pressure Type
Performance: Low Noise, Variable Frequency, Explosion-Proof, Corrosion-Proof
Mute: Low Noise
Customization:
Available

|

air compressor

What Is the Typical Lifespan of a Gas Air Compressor?

The typical lifespan of a gas air compressor can vary depending on several factors, including the quality of the compressor, its usage patterns, maintenance practices, and environmental conditions. However, with proper care and maintenance, a gas air compressor can last for many years. Here’s a detailed explanation of the factors that can affect the lifespan of a gas air compressor:

1. Quality of the Compressor:

The quality and construction of the gas air compressor play a significant role in determining its lifespan. Compressors made with high-quality materials, precision engineering, and robust components are generally more durable and can withstand heavy usage over an extended period.

2. Usage Patterns:

The usage patterns of the gas air compressor can impact its lifespan. If the compressor is used consistently and for extended periods, it may experience more wear and tear compared to compressors used intermittently or for lighter tasks. Heavy-duty applications, such as continuous operation with high-demand tools, can put more strain on the compressor and potentially reduce its lifespan.

3. Maintenance Practices:

Regular maintenance is crucial for extending the lifespan of a gas air compressor. Following the manufacturer’s recommended maintenance schedule, performing routine tasks like oil changes, filter cleaning/replacement, and inspection of components can help prevent issues and ensure optimal performance. Neglecting maintenance can lead to accelerated wear and potential breakdowns.

4. Environmental Conditions:

The operating environment can significantly impact the lifespan of a gas air compressor. Factors such as temperature extremes, humidity levels, presence of dust or debris, and exposure to corrosive substances can affect the compressor’s components and overall performance. Compressors used in harsh environments may require additional protection or specialized maintenance to mitigate these adverse conditions.

5. Proper Installation and Operation:

Proper installation and correct operation of the gas air compressor are essential for its longevity. Following the manufacturer’s guidelines for installation, ensuring proper ventilation, maintaining correct oil levels, and operating within the compressor’s specified capacity and pressure limits can help prevent excessive strain and premature wear.

Considering these factors, a well-maintained gas air compressor can typically last anywhere from 10 to 15 years or even longer. However, it’s important to note that this is a general estimate, and individual results may vary. Some compressors may experience shorter lifespans due to heavy usage, inadequate maintenance, or other factors, while others may last well beyond the expected lifespan with proper care and favorable conditions.

Ultimately, investing in a high-quality gas air compressor, adhering to recommended maintenance practices, and using it within its intended capabilities can help maximize its lifespan and ensure reliable performance for an extended period.

air compressor

Can Gas Air Compressors Be Used for Gas Line Maintenance?

Gas air compressors can be used for certain aspects of gas line maintenance, primarily for tasks that require compressed air. Here’s a detailed explanation:

1. Clearing Debris and Cleaning:

Gas air compressors can be utilized to clear debris and clean gas lines. Compressed air can be directed through the gas lines to dislodge and remove dirt, dust, rust particles, or other contaminants that may accumulate over time. This helps maintain the integrity and efficiency of the gas lines.

2. Pressure Testing:

Gas line maintenance often involves pressure testing to ensure the lines can withstand the required operating pressures. Gas air compressors can provide the necessary compressed air to pressurize the lines for testing purposes. By pressurizing the gas lines with compressed air, technicians can identify any leaks or weaknesses in the system.

3. Leak Detection:

Gas air compressors can also be used in conjunction with appropriate leak detection equipment to identify and locate gas leaks in the gas lines. Compressed air can be introduced into the lines, and the detection equipment can then identify any areas where the compressed air escapes, indicating a potential gas leak.

4. Valve and Equipment Maintenance:

Gas line maintenance may involve the inspection, maintenance, or replacement of valves and associated equipment. Compressed air can be used to clean and blow out debris from valves, purge lines, or assist in the disassembly and reassembly of components.

5. Pipe Drying:

Gas air compressors can aid in drying gas lines after maintenance or repairs. By blowing compressed air through the lines, any residual moisture can be removed, ensuring the gas lines are dry before being put back into service.

6. Precautions and Regulations:

When using gas air compressors for gas line maintenance, it is essential to follow safety precautions and adhere to relevant regulations. Gas line maintenance often involves working in hazardous environments, and proper training, equipment, and procedures must be followed to ensure the safety of personnel and the integrity of the gas system.

It is important to note that gas air compressors should not be used directly for pressurizing or transporting natural gas or other combustible gases. Gas line maintenance tasks involving gas air compressors primarily focus on using compressed air for specific maintenance and testing purposes, as outlined above.

In summary, gas air compressors can be useful for certain aspects of gas line maintenance, including clearing debris, pressure testing, leak detection, valve and equipment maintenance, and pipe drying. However, it is crucial to follow safety guidelines and regulations when working with gas lines and compressed air to ensure the safety and integrity of the gas system.

air compressor

Are There Different Types of Gas Air Compressors Available?

Yes, there are different types of gas air compressors available, each designed to suit specific applications and requirements. These different types vary in terms of design, power source, configuration, and intended use. Here’s a detailed explanation of the various types of gas air compressors:

1. Reciprocating Gas Air Compressors:

Reciprocating gas air compressors, also known as piston compressors, use a reciprocating motion of one or more pistons to compress the air. These compressors are commonly used for small to medium-scale applications and are available in both single-stage and two-stage configurations. Single-stage compressors compress the air in a single stroke, while two-stage compressors use an additional cylinder for further compression, resulting in higher pressures.

2. Rotary Screw Gas Air Compressors:

Rotary screw gas air compressors utilize two interlocking helical screws to compress the air. These compressors are known for their continuous and efficient operation, making them suitable for demanding industrial applications. They are often used in industries such as manufacturing, construction, and automotive where a constant supply of compressed air is required.

3. Rotary Vane Gas Air Compressors:

Rotary vane gas air compressors use a rotor with sliding vanes to compress the air. As the rotor rotates, the vanes slide in and out, creating compression chambers that compress the air. These compressors are compact, reliable, and often used for smaller-scale applications or in situations where space is limited.

4. Centrifugal Gas Air Compressors:

Centrifugal gas air compressors operate by accelerating the air using a high-speed impeller. The accelerated air is then redirected into a diffuser, which converts the velocity energy into pressure energy. These compressors are commonly used for large-scale applications requiring high volumes of compressed air, such as in power plants, refineries, or chemical processing industries.

5. Oil-Free Gas Air Compressors:

Oil-free gas air compressors are designed to provide clean, oil-free compressed air. They feature special sealing mechanisms and materials to prevent oil contamination in the compressed air. These compressors are commonly used in industries where oil-free air is essential, such as food and beverage processing, pharmaceuticals, electronics manufacturing, and painting applications.

6. Portable Gas Air Compressors:

Portable gas air compressors are specifically designed for mobility and ease of transportation. These compressors often feature wheels, handles, or trailers for convenient movement. They are commonly used in construction sites, remote job locations, outdoor events, or other situations where compressed air is needed at different locations.

7. High-Pressure Gas Air Compressors:

High-pressure gas air compressors are designed to generate compressed air at elevated pressures. These compressors are used in applications that require air pressure higher than the standard range, such as in diving operations, breathing air systems, or specialized industrial processes.

8. Biogas Air Compressors:

Biogas air compressors are specifically designed to compress biogas, which is generated from the decomposition of organic matter. These compressors are used in biogas production facilities, landfills, wastewater treatment plants, or agricultural operations where biogas is produced and utilized as an energy source.

These are just a few examples of the different types of gas air compressors available. Each type has its own advantages and is suitable for specific applications based on factors such as required airflow, pressure, mobility, oil-free operation, and environmental considerations. It’s important to choose the appropriate type of gas air compressor based on the specific needs of the application to ensure optimal performance and efficiency.

China high quality Hydrogen Chloride Compressor Diaphragm Oxygen Helium H2 Co Compressor Booster Toxic and Harmful Gases   air compressor for saleChina high quality Hydrogen Chloride Compressor Diaphragm Oxygen Helium H2 Co Compressor Booster Toxic and Harmful Gases   air compressor for sale
editor by CX 2024-05-02

China wholesaler 8bar 15kw Electric Permanent Magnet Rotary Screw Air Compressor manufacturer

Product Description

Product Description

Product Description

1) Germany imported main host, large rotor, low speed, high efficiency and high reliability.

2) Our unique dual-frequency design concept, to achieve effective energy saving and constant temperature, the frequency conversion tolerance range can reach 25%-100%.

3) Adopting the characteristics of stepless speed regulation of the frequency converter, through the PID regulator inside the controller or the frequency converter, it can quickly respond to pressure fluctuations and stabilize the air pressure. Compared with the upper and lower limit switch control of the power frequency operation, the air pressure is stable. Sexuality increased exponentially (±0.1 bar).

4) Acceleration/deceleration control soft start and stop, no starting CHINAMFG current.

5) When the whole machine is running stably, the frequency is less than the frequency of the power frequency machine, and the noise and mechanical wear are greatly reduced, which prolongs the life of the whole machine.

6) Pre-set large volume front air filter to ensure that the inside of the machine runs in a cleaner environment, suitable for

different environments.

 

Application fields:

Textile, spraying, medical, chemical, building materials, food processing, electronics, light industry,etc

Specification

Model

LV7M

LV11M

LV15M

LV22M

LV37M

Air Displacement(m3/min)

1.15

1.65

2.3

3.6

6.1

Working Pressure(bar)

8

8

8

8

8

Compression stage

1

1

1

1

1

Motor power(kw)

7.5

11

15

22

37

Rotate speed(rpm)

3000

3000

3000

3000

3000

Voltage(V/P/Hz)

380/3/50

380/3/50

380/3/50

380/3/50

380/3/50

Start

Soft start

Soft start

Soft start

Soft start

Soft start

Transfer method

Direct-driven

Direct-driven

Direct-driven

Direct-driven

Direct-driven

Connector size

G3/4″

G3/4″

G1″

G1″

G1-1/2″

Cooling

Air Cooling

Air Cooling

Air Cooling

Air Cooling

Air Cooling

Dimension(L*W)mm

940*670*820

1170*690*940

1170*690*940

1250*770*1115

1400*880*1300

Weight(kg)

220

350

380

580

780

Details Images

Packing & Delivery

Company Profile

  Founded in 1997, our factory has become 1 of the most powerful air compressor equipment and engineering drilling equipment manufacturers in China, and is a member of the national compressor industry association, drilling machinery and pneumatic tools industry association, and a drafting unit of national standards. All the products have passed the quality system certification of ISO9001:2000 and national inspection-free products.

  Its total registered capital of 245 million yuan, holding 10 subsidiaries, is a set of technology research and development,
production and manufacturing, sales and service functions in 1 of the modern machinery and equipment manufacturing
enterprises,the enterprise covers an area of 31000m2. The group has more than 1100 employees, including more than 100 middle and senior technical personnel. The group has established close cooperative relations with many domestic famous universities and other scientific research institutes, with strong product research and development capabilities.

  Now as the main exporter of drilling rigs and air compressors equipment in China. It has exported to more 60 countries such as Southeast Asia, South America, Africa, Eastern Europe, Russia etc. Excellent quality and perfect service gain the consistent praise from customers.

Certifications

Recommend Products

 

FAQ

Q1: Are you factory or trade company?
A1: We are factory. And we have ourselves trading company.

Q2: Warranty terms of your machine?
A2: One year warranty for the machine and technical support according to your needs.

Q3: Will you provide some spare parts of the machines?
A3: Yes, of course.

Q4: What about the voltage of products??Can they be customized?
A4: Yes, of course. The voltage can be customized according to your equirement.

Q5: How long will you take to arrange production?
A5: 380V 50HZ we can delivery the goods within 7-15 days. Other electricity or other color we will delivery within 20-30 days.

Q6: Can you accept OEM orders?
A6: Yes, with professional design team, OEM orders are highly welcome.

Q7 Which trade term can you accept?
A7: Available trade terms: FOB, CIF, CFR, EXW, CPT, etc.

 

18703629568

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Warranty: 1 Year
Lubrication Style: Lubricated
Cooling System: Air Cooling
Power Source: AC Power
Structure Type: Open Type
Installation Type: Stationary Type
Customization:
Available

|

air compressor

What Is the Role of Oil in Lubricated Screw Compressors?

In lubricated screw compressors, oil plays a crucial role in ensuring optimal performance, reliability, and longevity of the compressor. Here’s a detailed explanation of the role of oil in lubricated screw compressors:

Lubrication: One of the primary functions of oil in screw compressors is to provide lubrication to the moving parts, particularly the screw rotors. The oil forms a thin film between the rotors and the compressor housing, reducing friction and wear. This lubrication minimizes mechanical losses and helps maintain efficient operation by reducing energy consumption.

Sealing: Oil also acts as a sealing medium in lubricated screw compressors. The oil film created between the rotors and the compressor housing helps create a seal, preventing air or gas leakage between the high-pressure and low-pressure sides of the compressor. This sealing action is crucial for maintaining the compressors’ efficiency and preventing losses in compression performance.

Cooling: Oil plays a vital role in cooling various components of the screw compressor. As the compressed air or gas is compressed, it generates heat. The oil absorbs a significant amount of this heat and carries it away from the compression chamber. The oil then circulates through the compressor’s oil cooling system, where it dissipates the heat to the surrounding environment or through an oil cooler. Efficient oil cooling helps prevent overheating of the compressor components, ensuring reliable operation and extending the compressor’s lifespan.

Cleaning: The oil in lubricated screw compressors acts as a cleaning agent. It carries away contaminants, such as dirt, dust, and metal particles, that may enter the compressor during operation. The oil passes through filters and separators, removing these impurities and preventing them from accumulating in the compressor’s internal components. Clean oil helps maintain the integrity of the compressor’s internal parts and reduces the risk of damage or malfunctions.

Sealing Element Lubrication: In some lubricated screw compressors, the oil also serves to lubricate the sealing elements, such as the shaft seals or labyrinth seals. Proper lubrication of these seals helps maintain their effectiveness in preventing oil leakage and maintaining the separation between the oil and the compressed air or gas.

Corrosion Protection: Oil in screw compressors often contains additives that provide corrosion protection to the internal components. These additives form a protective layer on the metal surfaces, preventing corrosion caused by moisture or contaminants present in the compressed air or gas. Corrosion prevention helps maintain the compressor’s performance, efficiency, and reliability over time.

It’s important to note that lubricated screw compressors require regular oil monitoring, oil analysis, and oil changes to ensure optimal performance. The oil level, quality, and viscosity should be regularly checked and maintained within the manufacturer’s recommended specifications.

In summary, oil in lubricated screw compressors serves crucial functions such as lubrication, sealing, cooling, cleaning, sealing element lubrication, and corrosion protection. These functions collectively contribute to the efficient and reliable operation of the compressor, extending its service life and minimizing maintenance requirements.

air compressor

What Is the Impact of Ambient Temperature on Screw Compressor Performance?

Ambient temperature has a significant impact on the performance of screw compressors. Here’s a detailed explanation:

Screw compressors, like other types of compressors, rely on the surrounding environment to dissipate heat and maintain optimal operating conditions. The ambient temperature directly affects the compressor’s efficiency, capacity, power consumption, and overall performance.

Here are the key ways in which ambient temperature influences screw compressor performance:

1. Cooling Efficiency:

The cooling efficiency of a screw compressor is affected by the temperature difference between the compressed gas and the ambient air. As the ambient temperature increases, the temperature difference decreases, making it more challenging to transfer heat effectively. This can lead to higher discharge temperatures and reduced cooling efficiency, potentially impacting the compressor’s overall capacity and performance.

2. Capacity and Power Consumption:

Higher ambient temperatures can decrease the capacity of a screw compressor. Compressors are typically designed and rated based on specific operating conditions, including a defined ambient temperature range. When the ambient temperature exceeds the design limits, the compressor may experience reduced volumetric efficiency, resulting in a decrease in its overall capacity. Additionally, the compressor may require more power to maintain the desired pressure levels, leading to increased power consumption.

3. Heat Recovery:

In some applications, screw compressors are equipped with heat recovery systems to utilize the waste heat generated during compression. The effectiveness of heat recovery is influenced by the ambient temperature. Higher ambient temperatures can reduce the temperature differential available for heat exchange, limiting the potential for heat recovery and decreasing the overall system efficiency.

4. Lubrication and Cooling:

Screw compressors rely on lubrication systems to reduce friction and prevent wear between moving parts. The ambient temperature affects the performance of the lubricant. In high ambient temperatures, the lubricant may experience decreased viscosity, potentially leading to inadequate lubrication and increased wear on compressor components. Similarly, the cooling system of the compressor, including fans and heat exchangers, may be less effective in higher ambient temperatures, impacting the compressor’s ability to dissipate heat.

5. Operating Envelope:

Screw compressors have specified operating envelopes, which define the acceptable range of operating conditions, including ambient temperature. Operating the compressor outside its designed ambient temperature range can result in reduced reliability, increased maintenance requirements, and potential system failures. It is crucial to adhere to the manufacturer’s guidelines and ensure that the compressor operates within the recommended ambient temperature limits.

6. Control and Protection:

Modern screw compressors often feature advanced control and protection systems that monitor various parameters, including ambient temperature. These systems may adjust compressor operation, such as modulation of capacity or cooling strategies, to optimize performance and protect the compressor from operating outside safe limits. Understanding the impact of ambient temperature allows for appropriate adjustments and settings to maintain reliable and efficient compressor operation.

It’s important to note that different compressor models and manufacturers may have specific performance characteristics and operating limits. Therefore, consulting the manufacturer’s documentation and guidelines for the particular screw compressor in use is essential.

In summary, ambient temperature significantly affects the performance of screw compressors. Higher ambient temperatures can reduce cooling efficiency, decrease compressor capacity, increase power consumption, and impact lubrication and cooling systems. Adhering to recommended operating conditions and considering ambient temperature limitations are crucial for ensuring optimal performance, reliability, and longevity of screw compressors.

air compressor

What Is a Screw Compressor?

A screw compressor is a type of positive displacement compressor that operates based on the principle of rotary motion. Here’s a detailed explanation:

Working Principle:

A screw compressor consists of two helical rotors, typically called male and female rotors, that rotate in opposite directions within a housing. The rotors have specially designed profiles that interlock with each other, creating a series of compression chambers as they rotate. As the rotors rotate, the volume of these chambers decreases, compressing the air or gas trapped inside.

Compression Process:

As the air or gas enters the screw compressor, it gets trapped between the rotors’ lobes or threads. As the rotors continue to rotate, the trapped air or gas is carried along the length of the rotors and gradually compressed. The compression occurs continuously and smoothly as the air or gas moves from the suction side to the discharge side of the compressor. The interlocking rotors ensure a continuous flow of compressed air or gas without pulsation.

Oil-Injected and Oil-Free Variants:

Screw compressors are available in both oil-injected and oil-free variants. In oil-injected screw compressors, a small amount of lubricating oil is injected into the compression chamber to provide lubrication, cooling, and sealing between the rotors. The oil also helps in reducing friction and minimizing wear. Oil-injected screw compressors are commonly used in various industrial applications where a small amount of oil in the compressed air is acceptable.

On the other hand, oil-free screw compressors are designed to operate without the need for oil lubrication. These compressors use specialized rotor coatings, such as PTFE (polytetrafluoroethylene) or other non-stick materials, to reduce friction and prevent the need for oil. Oil-free screw compressors are often favored in applications where oil-free and contaminant-free compressed air is essential, such as in food and beverage, pharmaceutical, and electronics industries.

Applications:

Screw compressors are widely used in various industries for a range of applications. They are commonly employed in manufacturing plants, refineries, power generation facilities, and other industrial settings to supply compressed air or gas for pneumatic tools, process equipment, air conditioning systems, and more. The ability of screw compressors to deliver a continuous flow of compressed air or gas makes them suitable for applications that require a steady and reliable source of compressed air.

Advantages:

Screw compressors offer several advantages compared to other types of compressors. They provide high efficiency and can deliver a large volume of compressed air or gas. The continuous compression process results in smooth operation with minimal pulsation. Additionally, screw compressors are known for their compact design, low vibration levels, and relatively quiet operation.

In summary, a screw compressor is a rotary positive displacement compressor that uses interlocking helical rotors to compress air or gas. It operates based on a continuous compression process and is available in both oil-injected and oil-free variants. Screw compressors find widespread use in various industries for applications that require a reliable source of compressed air or gas.

China wholesaler 8bar 15kw Electric Permanent Magnet Rotary Screw Air Compressor   manufacturer China wholesaler 8bar 15kw Electric Permanent Magnet Rotary Screw Air Compressor   manufacturer
editor by CX 2024-05-02

China high quality Standard Direct Drive Screw/Permanent Magnet Variable Speed/Pm VSD Screw Air Compressor with Best Sales

Product Description

Product Description

Vico hot sale industrial air paint  belt driven compressors machine VSC-20A
 

1.Enlarged steel thickness and square large-volume box, with less internal pressure loss and good appearance.
2.The cylinder is made of wear-resistant cast iron material, increased wall thickness, multi-blade design, high wear resistance, small temperature deformation, and better colling effect.
3.Using ductile iron crankshaft, high fatigue strength. Good vibration absorption, the crank pin is treated by high frequency quenching, which has good wear resistance and minimal vibration.
4.The connecting rod is made of high-quality alloy with high strength and good stability. It has extremely high folding stability, light weight, and small inertial force.
5.The piston is made of high-strength cast aluminum alloy with sufficient strength and hardness.
6.The enlarged protruding oil mirror makes it easier to observe the oil level.
7.Intelligent overload phase loss protector to avoid damage to the motor when voltage and wire phase missing problem.
8.Closed protective cover to improve safety protection.
*(1Mpa=10bar)

Detailed Photos

Series:

VSC-20A

Power:

15KW 20HP

Pressure:

0.7-1.25Mpa

Capacity:

1.7-2.4 m3/min

Voltage:

3PH, 220V/380V/450V,50Hz/60Hz

Dimensions:

1050*700*1000

Weight:

300kgs

Warranty:

5 years for whole set (except air filter oil filter oil separator,
3 years for air end)

 

Series: 

 

 

7.5KW 10HP

Pressure:

1.25Mpa

Speed:

760rpms

Cylinder:

Φ105*2+Φ55*2

Capacity:

1.05 m3/min

Tank:

300L

Voltage:

3PH/380V/50Hz

Dimensions:

1600*580*1200mm(L*W*H)

Weight:

300kgs

Packaging & Shipping

Standard Export package

Company Profile

We are manufacturer and wholesaler of Automotive Equipment, experience over 10+ years. Including Autobody frame machine, Painting booth, Car lifts, wheel alignment, tyre changer, balancer. Jacks, AC machine, Baking lamp, Welding spotter… We sell standard products to final users, and we offer shop design solutions for auto body shop starter/owner and OEM for world whole seller and distributors.

Our Advantages

Our sales team can offer 24H x 7D online consultation service We make sure order products qualified, test before delivery, well packaged with professional shipping. Most of our products with 3 years warranty and whole life after sale service.We offer competitive price with quantity order. We take care every inquiry and treat it with patience, we aim to be best buy of automotive equipment supplier!

FAQ

 

  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 1 Years
Warranty: 1 Years
Flow: Contra-Flow
Samples:
US$ 1598/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

air compressor

What Is the Role of Oil in Lubricated Screw Compressors?

In lubricated screw compressors, oil plays a crucial role in ensuring optimal performance, reliability, and longevity of the compressor. Here’s a detailed explanation of the role of oil in lubricated screw compressors:

Lubrication: One of the primary functions of oil in screw compressors is to provide lubrication to the moving parts, particularly the screw rotors. The oil forms a thin film between the rotors and the compressor housing, reducing friction and wear. This lubrication minimizes mechanical losses and helps maintain efficient operation by reducing energy consumption.

Sealing: Oil also acts as a sealing medium in lubricated screw compressors. The oil film created between the rotors and the compressor housing helps create a seal, preventing air or gas leakage between the high-pressure and low-pressure sides of the compressor. This sealing action is crucial for maintaining the compressors’ efficiency and preventing losses in compression performance.

Cooling: Oil plays a vital role in cooling various components of the screw compressor. As the compressed air or gas is compressed, it generates heat. The oil absorbs a significant amount of this heat and carries it away from the compression chamber. The oil then circulates through the compressor’s oil cooling system, where it dissipates the heat to the surrounding environment or through an oil cooler. Efficient oil cooling helps prevent overheating of the compressor components, ensuring reliable operation and extending the compressor’s lifespan.

Cleaning: The oil in lubricated screw compressors acts as a cleaning agent. It carries away contaminants, such as dirt, dust, and metal particles, that may enter the compressor during operation. The oil passes through filters and separators, removing these impurities and preventing them from accumulating in the compressor’s internal components. Clean oil helps maintain the integrity of the compressor’s internal parts and reduces the risk of damage or malfunctions.

Sealing Element Lubrication: In some lubricated screw compressors, the oil also serves to lubricate the sealing elements, such as the shaft seals or labyrinth seals. Proper lubrication of these seals helps maintain their effectiveness in preventing oil leakage and maintaining the separation between the oil and the compressed air or gas.

Corrosion Protection: Oil in screw compressors often contains additives that provide corrosion protection to the internal components. These additives form a protective layer on the metal surfaces, preventing corrosion caused by moisture or contaminants present in the compressed air or gas. Corrosion prevention helps maintain the compressor’s performance, efficiency, and reliability over time.

It’s important to note that lubricated screw compressors require regular oil monitoring, oil analysis, and oil changes to ensure optimal performance. The oil level, quality, and viscosity should be regularly checked and maintained within the manufacturer’s recommended specifications.

In summary, oil in lubricated screw compressors serves crucial functions such as lubrication, sealing, cooling, cleaning, sealing element lubrication, and corrosion protection. These functions collectively contribute to the efficient and reliable operation of the compressor, extending its service life and minimizing maintenance requirements.

air compressor

Can Screw Compressors Be Used for Refrigeration?

Yes, screw compressors can be used for refrigeration applications. Here’s a detailed explanation:

Screw compressors are versatile and widely used in various industrial applications, including refrigeration. They are known for their efficiency, reliability, and ability to handle high-capacity refrigeration systems. Screw compressors work by compressing refrigerant gas, increasing its pressure and temperature, and then transferring the heat to the surrounding environment.

Here are some key points regarding the use of screw compressors in refrigeration:

1. Industrial Refrigeration Systems:

Screw compressors are commonly employed in large-scale industrial refrigeration systems, such as those used in cold storage facilities, food processing plants, beverage production, and HVAC systems for commercial buildings. These systems require high cooling capacities and continuous operation, making screw compressors an ideal choice.

2. Positive Displacement Compressors:

Screw compressors belong to the category of positive displacement compressors. They use two interlocking helical rotors (screws) to trap and compress the refrigerant gas. This design ensures a continuous flow of refrigerant and allows for efficient compression over a wide range of operating conditions.

3. Oil-Injected and Oil-Free Types:

Screw compressors can be either oil-injected or oil-free. Oil-injected screw compressors use oil for lubrication and cooling, which helps reduce friction and extend the compressor’s lifespan. In contrast, oil-free screw compressors use specialized coatings and materials to eliminate the need for oil, making them suitable for applications where oil contamination is a concern, such as in the pharmaceutical or food industries.

4. Multi-Stage Compression:

In refrigeration applications, screw compressors are often used in multi-stage configurations to achieve higher pressure ratios and improve overall system efficiency. Multi-stage compression involves compressing the refrigerant gas in multiple stages, typically with intermediate cooling between each stage, to reduce the work required for compression and enhance system performance.

5. Variable Speed Control:

Screw compressors can be equipped with variable speed drives (VSD) that allow for precise control of the compressor’s rotational speed. VSD technology enables the compressor to adjust its capacity according to the refrigeration load, resulting in energy savings and improved system performance.

6. System Integration:

Screw compressors are often integrated into complex refrigeration systems, working in tandem with other components such as condensers, evaporators, expansion valves, and control systems. This integration ensures efficient heat transfer, proper refrigerant flow, and effective temperature control.

It’s important to note that the selection of a screw compressor for refrigeration applications should consider factors such as cooling capacity requirements, operating conditions, refrigerant type, system configuration, and specific industry regulations.

In summary, screw compressors are well-suited for refrigeration applications, especially in industrial settings. Their efficiency, reliability, and capacity make them a popular choice for large-scale refrigeration systems. Whether in cold storage facilities, food processing plants, or HVAC systems, screw compressors play a crucial role in maintaining optimal temperatures and preserving perishable goods.

air compressor

What Is the Efficiency of Screw Compressors?

The efficiency of screw compressors can vary depending on various factors, including the design, operating conditions, and maintenance. Here’s a detailed explanation of the efficiency of screw compressors:

1. Isothermal Efficiency:

Isothermal efficiency refers to the ideal efficiency of a compressor operating under isothermal conditions. In reality, screw compressors experience temperature rise during compression, and therefore, they do not achieve isothermal efficiency. The compression process in screw compressors is considered to be relatively close to isothermal compared to other compressor types, such as reciprocating compressors. This is due to the continuous and smooth flow of air or gas through the compression chamber, which helps in minimizing temperature differences.

2. Adiabatic Efficiency:

Adiabatic efficiency refers to the actual efficiency of a compressor, taking into account the heat generated during compression. Screw compressors typically have higher adiabatic efficiency compared to reciprocating compressors. The helical design of the rotors and the presence of intermeshing lobes allow for efficient compression with minimal energy loss. The adiabatic efficiency of a screw compressor can be influenced by factors such as the compression ratio, rotational speed, and discharge pressure.

3. Overall Efficiency:

The overall efficiency of a screw compressor takes into account various factors, including mechanical losses, power consumption, and auxiliary power requirements. Mechanical losses can occur due to friction between the rotors, bearings, and other moving parts. Well-maintained screw compressors with properly lubricated components and well-aligned rotors can minimize mechanical losses and improve overall efficiency. Power consumption is another factor affecting efficiency, and it can vary depending on the size, design, and operating conditions of the compressor.

4. Energy Efficiency:

Energy efficiency is an important aspect of screw compressors. It relates to the ability of the compressor to convert electrical energy into compressed air with minimal energy waste. Energy-efficient screw compressors are designed to optimize the compression process, reduce power consumption, and maximize output for a given input. Variable Speed Drive (VSD) screw compressors, for example, can adjust the rotational speed to match the compressed air demand, resulting in improved energy efficiency and significant energy savings.

It’s important to note that the efficiency of screw compressors can vary depending on the specific model, design features, and operating conditions. Regular maintenance, including proper lubrication, cleaning, and component inspection, is crucial for maintaining high efficiency levels. Additionally, selecting the right size and type of screw compressor for the intended application is essential to achieve optimal efficiency and performance.

In summary, screw compressors are known for their relatively high efficiency compared to other compressor types. While they may not achieve perfect isothermal efficiency, their adiabatic efficiency, overall efficiency, and energy efficiency make them suitable for a wide range of industrial applications.

China high quality Standard Direct Drive Screw/Permanent Magnet Variable Speed/Pm VSD Screw Air Compressor   with Best SalesChina high quality Standard Direct Drive Screw/Permanent Magnet Variable Speed/Pm VSD Screw Air Compressor   with Best Sales
editor by CX 2024-05-02

China supplier Oil Free Piston LPG Compressor Gas Station Compressor for Loading and Unloading portable air compressor

Product Description

HangZhou CHINAMFG Gas Equipment Co.,Ltd, exporting diaphragm compressor, piston compressor, screw air compressor, gas cylinder and nitrogen generators with good quality and low price.

High Pressure Booster Compressor for Loading LPG Gas Station Oil-Free Piston Compressor High Pressure LPG Booster Compressor for Loading LPG Gas Station

Our company specialize in making various kinds of compressors, such as:Diaphragm compressor,Piston compressor, Air compressors,Nitrogen generator,Oxygen generator ,Gas cylinder,etc. All products can be customized according to your parameters and other requirements.

This series of oil-free compressor is 1 of the first products produced by our factory in China. The product has the characteristics of low speed, high component strength, stable operation, long service life and convenient maintenance. This series compressor is in the form of unit. It integrates compressor, gas-liquid separator, filter, 2 position four-way valve, safety valve, check valve, explosion-proof motor and chassis. The utility model has the advantages of small volume, light weight, low noise, good sealing performance, easy installation, simple operation, etc.

Main components:

1. Motion system: crankshaft, piston connecting rod assembly, coupling, etc.

2. Air distribution system: valve plate, valve spring, etc.

3. Sealing system: piston ring, oil seal, gasket, packing, etc.

4. Body system: crankcase, cylinder block, cylinder liner, cover plate, etc.

5. Lubrication system: lubricating oil pump, oil filter, pressure regulating valve, etc.;

6. Safety and energy regulation systems: safety valves, energy regulation devices, etc.

Working principle of piston compressor

When the crankshaft of the piston compressor rotates, the piston will reciprocate through the transmission of the connecting rod,and the working volume formed by the inner wall of the cylinder, the cylinder head and the top surface of the piston will periodically change. When the piston of a piston compressor starts to move from the cylinder head, the working volume in the cylinder gradually increases. At this time, the gas flows along the intake pipe and pushes the intake valve to enter the cylinder until the working volume reaches the maximum. , The intake valve is closed; when the piston of the piston compressor moves in the reverse direction, the working volume in the cylinder is reduced, and the gas pressure is increased. When the pressure in the cylinder reaches and is slightly higher than the exhaust pressure, the exhaust valve opens and the gas is discharged from the cylinder , Until the piston moves to the limit position, the exhaust valve is closed. When the piston of the piston compressor moves in the reverse direction again, the above process repeats. In short, the crankshaft of a piston compressor rotates once, the piston reciprocates once, and the process of air intake, compression, and exhaust is realized in the cylinder, which completes a work cycle.

Advantages of piston compressor

1. The applicable pressure range of the piston compressor is wide, and the required pressure can be reached regardless of the flow rate;

2. The piston compressor has high thermal efficiency and low unit power consumption;

3. Strong adaptability, that is, a wide exhaust range, and is not affected by the pressure level, and can adapt to a wider

pressure range and cooling capacity requirements;

4. Piston compressors have low requirements for materials, and use common steel materials, which is easier to process and lower in cost;

5. The piston compressor is relatively mature in technology, and has accumulated rich experience in production and use;

6. The device system of the piston compressor is relatively simple.

Note: In the unloading process, the compressor pressurizes the gas from the storage tank and then presses it into the tank car through the gas-phase pipeline, and presses the liquid from the tank car to the storage tank through the gas-phase differential pressure to complete the unloading process. When the gas phase is pressurized, the temperature of the gas phase will rise. At this time, forced cooling is not necessary, because if the gas phase is compressed and then cooled, it is easy to liquefy, and it is difficult to establish the pressure difference of the gas phase, which is not conducive to the replacement of the gas phase and the liquid phase. In short, it will cause the prolongation of the unloading process. If it is necessary to recover the residual gas, the cooler can be selected to forcibly cool the gas phase during the recovery operation, so as to recover the residual gas as soon as possible.The loading process is opposite to the unloading process.

Chemical Process Compressor Description

Chemical process compressors refer to process reciprocating piston compressors used to compress various single or mixed media gases in petroleum and chemical processes, as well as chemical exhaust gas recycling systems. Its main function is to transport the medium gas in the reaction device and provide the required pressure to the reaction device. Features

1. Designed for specific process flow.

2. The whole machine is skid-mounted and advanced in structure.

3. The compressor types are: Z type, D type, M type.

4. The middle body of the slideway and the cylinder can be designed in different structural forms according to the process requirements.

Packing & Delivery

 

 FAQ
Q1.How to get a prompt quotation of gas compressor ?
A1: 1)Flow Rate/Capacity : ___ Nm3/h

2)Suction/ Inlet Pressure : ____ Bar
3)Discharge/Outlet Pressure :____ Bar

4)Gas Medium :_____
5)Voltage and Frequency : ____ V/PH/HZ

Q2.How long is delivery time ?
A2:Delivery time is around the 30-90 days .

Q3.What about the voltage of products? Can they be customized?
A3:Yes, the voltage can be customized according to your inquire.

4.Can you accept OEM orders? Yes, OEM orders is highly welcome.
Q5.Will you provide some spare parts of the machines? A5:Yes, we will .

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

After-sales Service: 7*24
Warranty: 18months
Lubrication Style: Lubricated or Oil Free
Cooling System: Water Cooling or Air Cooling
Cylinder Arrangement: Balanced Opposed Arrangement
Cylinder Position: Angular
Customization:
Available

|

air compressor

What Is the Typical Lifespan of a Gas Air Compressor?

The typical lifespan of a gas air compressor can vary depending on several factors, including the quality of the compressor, its usage patterns, maintenance practices, and environmental conditions. However, with proper care and maintenance, a gas air compressor can last for many years. Here’s a detailed explanation of the factors that can affect the lifespan of a gas air compressor:

1. Quality of the Compressor:

The quality and construction of the gas air compressor play a significant role in determining its lifespan. Compressors made with high-quality materials, precision engineering, and robust components are generally more durable and can withstand heavy usage over an extended period.

2. Usage Patterns:

The usage patterns of the gas air compressor can impact its lifespan. If the compressor is used consistently and for extended periods, it may experience more wear and tear compared to compressors used intermittently or for lighter tasks. Heavy-duty applications, such as continuous operation with high-demand tools, can put more strain on the compressor and potentially reduce its lifespan.

3. Maintenance Practices:

Regular maintenance is crucial for extending the lifespan of a gas air compressor. Following the manufacturer’s recommended maintenance schedule, performing routine tasks like oil changes, filter cleaning/replacement, and inspection of components can help prevent issues and ensure optimal performance. Neglecting maintenance can lead to accelerated wear and potential breakdowns.

4. Environmental Conditions:

The operating environment can significantly impact the lifespan of a gas air compressor. Factors such as temperature extremes, humidity levels, presence of dust or debris, and exposure to corrosive substances can affect the compressor’s components and overall performance. Compressors used in harsh environments may require additional protection or specialized maintenance to mitigate these adverse conditions.

5. Proper Installation and Operation:

Proper installation and correct operation of the gas air compressor are essential for its longevity. Following the manufacturer’s guidelines for installation, ensuring proper ventilation, maintaining correct oil levels, and operating within the compressor’s specified capacity and pressure limits can help prevent excessive strain and premature wear.

Considering these factors, a well-maintained gas air compressor can typically last anywhere from 10 to 15 years or even longer. However, it’s important to note that this is a general estimate, and individual results may vary. Some compressors may experience shorter lifespans due to heavy usage, inadequate maintenance, or other factors, while others may last well beyond the expected lifespan with proper care and favorable conditions.

Ultimately, investing in a high-quality gas air compressor, adhering to recommended maintenance practices, and using it within its intended capabilities can help maximize its lifespan and ensure reliable performance for an extended period.

air compressor

What Is the Role of Air Receivers in Gas Air Compressor Systems?

Air receivers play a crucial role in gas air compressor systems by serving as storage tanks for compressed air. Here’s a detailed explanation:

1. Storage and Stabilization:

The primary function of an air receiver is to store compressed air generated by the gas air compressor. As the compressor produces compressed air, the air receiver collects and stores it. This storage capacity helps meet fluctuating demand in compressed air usage, providing a buffer between the compressor and the system’s air consumption.

By storing compressed air, the air receiver helps stabilize the supply to the system, reducing pressure fluctuations and ensuring a consistent and reliable flow of compressed air. This is particularly important in applications where the demand for compressed air may vary or experience peaks and valleys.

2. Pressure Regulation:

Another role of the air receiver is to assist in pressure regulation within the gas air compressor system. As compressed air enters the receiver, the pressure inside increases. When the pressure reaches a predetermined upper limit, typically set by a pressure switch or regulator, the compressor stops supplying air, and the excess air is stored in the receiver.

Conversely, when the pressure in the system drops below a certain lower limit, the pressure switch or regulator signals the compressor to start, replenishing the compressed air in the receiver and maintaining the desired pressure level. This cycling of the compressor based on pressure levels helps regulate and control the overall system pressure.

3. Condensate Separation:

During the compression process, moisture or condensate can form in the compressed air due to the cooling effect. The air receiver acts as a reservoir that allows the condensate to settle at the bottom, away from the outlet. The receiver often includes a drain valve at the bottom to facilitate the removal of accumulated condensate, preventing it from reaching downstream equipment and causing potential damage or performance issues.

4. Energy Efficiency:

Air receivers contribute to energy efficiency in gas air compressor systems. They help optimize the operation of the compressor by reducing the occurrence of short-cycling, which refers to frequent on-off cycling of the compressor due to rapid pressure changes. Short-cycling can cause excessive wear on the compressor and reduce its overall efficiency.

The presence of an air receiver allows the compressor to operate in longer and more efficient cycles. The compressor runs until the receiver reaches the upper pressure limit, ensuring a more stable and energy-efficient operation.

5. Air Quality Improvement:

Depending on the design, air receivers can also aid in improving air quality in the compressed air system. They provide a space for the compressed air to cool down, allowing moisture and some contaminants to condense and separate from the air. This can be further enhanced with the use of additional filtration and drying equipment installed downstream of the receiver.

In summary, air receivers play a vital role in gas air compressor systems by providing storage capacity, stabilizing compressed air supply, regulating system pressure, separating condensate, improving energy efficiency, and contributing to air quality control. They are an integral component in ensuring the reliable and efficient operation of compressed air systems across various industries and applications.

air compressor

What Are the Advantages of Using a Gas Air Compressor Over an Electric One?

Using a gas air compressor offers several advantages over an electric air compressor. Gas-powered compressors provide unique benefits in terms of mobility, versatility, power, and convenience. Here’s a detailed explanation of the advantages of using a gas air compressor:

1. Portability and Mobility:

Gas air compressors are typically more portable and mobile compared to electric compressors. They often feature handles, wheels, or trailers, allowing for easy transportation to different locations. This portability is especially advantageous in situations where compressed air is needed at remote job sites, outdoor events, or areas without access to electricity. Gas air compressors can be easily moved and positioned where they are required.

2. Independence from Electricity:

One of the primary advantages of gas air compressors is their independence from electricity. They are powered by gas engines, which means they do not rely on a direct connection to the electrical grid. This makes them suitable for use in areas where electrical power is limited, unreliable, or unavailable. Gas air compressors offer a reliable source of compressed air even in remote locations or during power outages.

3. Versatility in Fuel Options:

Gas air compressors provide versatility in terms of fuel options. They can be powered by various types of combustible gases, including gasoline, diesel, natural gas, or propane. This flexibility allows users to choose the most readily available or cost-effective fuel source based on their specific requirements. It also makes gas compressors adaptable to different environments and fuel availability in various regions.

4. Higher Power Output:

Gas air compressors typically offer higher power output compared to electric compressors. Gas engines can generate more horsepower, allowing gas compressors to deliver greater air pressure and volume. This higher power output is beneficial when operating pneumatic tools or equipment that require a significant amount of compressed air, such as jackhammers, sandblasters, or heavy-duty impact wrenches.

5. Continuous Operation:

Gas air compressors can provide continuous operation without the need for frequent breaks or cooldown periods. Electric compressors may overheat with prolonged use, requiring intermittent rest periods to cool down. Gas compressors, on the other hand, can operate continuously for longer durations without the risk of overheating. This continuous operation capability is particularly advantageous in demanding applications or situations that require extended periods of compressed air usage.

6. Quick Startup and Response:

Gas air compressors offer quick startup and response times. They can be started instantly by simply pulling a cord or pressing a button, whereas electric compressors may require time to power up and reach optimal operating conditions. Gas compressors provide immediate access to compressed air, allowing for efficient and prompt task completion.

7. Durability and Resistance to Voltage Fluctuations:

Gas air compressors are generally more durable and resistant to voltage fluctuations compared to electric compressors. Electric compressors can be affected by voltage drops or surges, which may impact their performance or cause damage. Gas compressors, however, are less susceptible to voltage-related issues, making them reliable in environments where voltage fluctuations are common.

8. Lower Energy Costs:

Gas air compressors can offer lower energy costs compared to electric compressors, depending on the price of the fuel being used. Gasoline or diesel fuel, for example, may be more cost-effective than electricity in certain regions or applications. This cost advantage can result in significant savings over time, especially for high-demand compressed air operations.

Overall, the advantages of using a gas air compressor over an electric one include portability, independence from electricity, fuel versatility, higher power output, continuous operation capability, quick startup and response times, durability, resistance to voltage fluctuations, and potentially lower energy costs. These advantages make gas air compressors a preferred choice in various industries, remote locations, and applications where mobility, power, and reliability are crucial.

China supplier Oil Free Piston LPG Compressor Gas Station Compressor for Loading and Unloading   portable air compressorChina supplier Oil Free Piston LPG Compressor Gas Station Compressor for Loading and Unloading   portable air compressor
editor by CX 2024-04-30